

Master's Degree programme

in Data Analytics for Business and Society

Final Thesis

Bayesian

Neural Networks
For time series forecasting

Supervisor
Ch. Prof. Roberto Casarin

Assistant supervisor
Ch. Prof. Davide Raggi

Graduand
Marco Solari
Matriculation Number 875475

Academic Year
2023 / 2024

Table of contents

1 Introduction 1

2 Neural Networks 5
2.1 Multi-layered perceptron structure and functional model 5
2.2 Deep learning models as universal approximators and their limits . 11
2.3 Sources of uncertainty . 13
2.4 Specialized architectures for time series 15
2.5 Recurrent neural networks . 16
2.6 Long-Short TermMemory . 18
2.7 Review of recent developments for Neural Networks 22

3 Bayesian Neural Networks 25
3.1 From functional to stochastic models 26
3.2 Markov ChainMonte Carlo and theMetropolis-Hasting algorithm . 28
3.3 Variational Inference and probabilistic backpropagation 31
3.4 Review of recent developments for Bayesian Neural Networks . . . 34
3.5 Simulated examples . 36

4 Real data applications 59
4.1 Presenting the datasets and the realized range 59
4.2 €/$ exchange rate . 62
4.3 S&P 500 index . 65

5 Conclusions 73

Abbreviations list 75

List of Figures 77

List of Tables 79

Bibliography 81

iii

1 Introduction

Artificial Neural Networks are parametric models that mimic the mental functions

of higher life forms, emulating how the brain’s pathways can create connections

that allow them to recognize and interpret complex patterns. This approach, while

at the first stages not fruitful, eventually brought awave of newmodeling and com-

putational approaches in the fields of machine learning and artificial intelligence,

trickling down from there and expanding in all fields for which the ability of these

models to approximate almost any function unlocked powerful and useful applica-

tion, from self-driving cars to Large LanguageModels.

However, these models show an inherent weakness: working as a black box, they

fail to take into account uncertainty; hence, they are fragile in applications that in-

volve stochasticity and for which overfitting and lack of generalization hinder their

applicability, in particular in the high-risk scenarios for which their approximation

capabilities would make them an excellent and versatile approach.

This thesis explores how Bayesian inference can be applied to Neural Networks to

estimate the epistemic uncertainty associated with their tuning and predictions: it

is a powerful framework that unbinds them from the limitation of the point fore-

cast andunlocksprobabilistic forecasts. Byapplying theBayes theoremandtreating

their parameters as stochastic variables, an ensembleofNeuralNetworks canoutput

a whole posterior predictive distribution. Moreover, this framework is robust to

overfitting and overconfidence, addressing one of themost important issues of the

standard, functional approach.

The perceptron is a very versatile model: applications are found in many fields and

specialized variations of the basic structure abound, allowing it to perform diverse

tasks such as computer vision and reinforcement learning. This thesis will be

focused on the Recurrent Neural Network, a specialized architecture that excels

at learning sequences, and will test its applications on time series forecasting with

both simulated and real data; the latter, sourced fromBloomberg, will challenge the

Bayesian Recurrent Neural Network with forecasting dynamically the volatility of

1

1 Introduction

the €/$ currency exchange rage and of the S&P 500 data, using high-frequency

trading data sampled at the frequency of 1minute.

This thesiswill beorganized as follows: Section2 introduces themain concepts and

history of the basemodel, the Artificial Neural Network and in particular themulti-

layered perceptron (Section 2.1), its strengths and limitations (Section 2.2), and

the often overlooked sources of uncertainty that this framework generates (Sec-

tion 2.3).

Section2.4will argue that sequential data, suchas timeseries, needa specializedar-

chitecture to respect the ordering of the time-dependent variables; moreover, Sec-

tion 2.5 and Section 2.6 analyze the Long Short-TermMemory perceptron and its

ability to store past information into hidden states, allowing it to effectively model

longer-time dependencies, thusmaking it the undiscussed champion of time series

forecasting, being the most used model for a variety of economic and financial ap-

plications.

Section 3.1 delves deeper into the limits of the standard, functional architecture by

introducing theBayesianNeuralNetwork and the stochasticmodels that underpin

all the following analyses, while Section 3.2 and Section 3.3 address the necessary

approximation techniques that allow computing the posterior predictive of the net-

work, which otherwise would be tractable only in the simplest of models and sce-

narios, therefore allowing applications to multidimensional models and big data.

While the first applications of the Bayesian Recurrent Neural Network can be

traced to Fortunato, Blundell, and Vinyals (2017), Section 2.7 and Section 3.4 ex-

plore themore recent developmentofBayesianNeuralNetworks, focusingon time

series forecasting. This literature review is followed by a battery of simulations

(Section 3.5) that aims at visualizing and summarizing the theoretical properties of

these stochastic models and the approximation methods, exploring deep learning

architectures and applying them to two different stochastic processes.

The last section exits from the theoretical and simulated perspective to challenge

the Bayesian Neural Network with a demanding scenario: forecasting dynamically

high-frequency time series. Section 4.2 is based on €/$ exchange rate data, based

on samples starting from 01/12/2023 and ending on 03/02/2024, while Sec-

tion 4.3will be about forecasting the volatility of the S&P500 index using data from

02/02/2020 to 26/03/2020: both settings have their challenges, and in particular

the latter is focused on the days following the systemic shock of COVID-19, a

window in which volatility spiked and sudden downward shifts brought havoc in

themarket.

2

Section 5 will summarise the result of all forecasts, linking the theoretical exposi-

tion to the results and presenting the conclusions of this work.

All the code for this thesis has been written in R (R Core Team 2023) using RStu-
dio (Posit team 2024); in particular, all charts are made with the graphic library

ggplot (Wickham 2016), while the networks diagrams are coded in LaTeX with

TikZ (Tantau 2013).

All the Bayesian Neural Networks use Julia (Bezanson et al. 2017) as their back-
end and in particular the package BayesFluxR (Wegner 2023).

3

2 Neural Networks

This chapter introduces the main concepts behind Neural Networks, with a focus

on turning them into statistical models. Section 2.1 and Section 2.2 present their

structure and functional model, showing their limits and in particular their inabil-

ity to quantify uncertainty. Section 2.3 presents the sources of uncertainty. Sec-

tion 2.4, Section 2.5, and Section 2.6 introduce a specialized Neural Network ar-

chitecture, the logic behind it, and why it excels in sequence modeling, thus being

themost natural candidate for forecasting time series, in which the time dimension

has a natural ordering that yields fundamental information that should not be dis-

carded. To conclude, Section 2.7 reviews more recent architectures developed for

this application.

2.1 Multi-layered perceptron structure and
functional model

The first approximation of a “neuron” as a computational unit able to solve complex

tasks was proposed in the 1940s with the paper “Logical Calculus of Ideas Imma-

nent in Nervous Activity” (McCulloch and Pitts 1943), breaking new grounds:

“What was novel […] was a theory that employed logic and the mathe-

matical notion of computation - introduced by Alan Turing (1936-37)

in terms of what came to be known as TuringMachines - to explain how

neural mechanisms might realize mental function”. (Piccinini 2004, 175)

At its core, a neural network is a parametric model capable of capturing

functions with arbitrary accuracy: it is a non-linear function 𝑓(𝑋), where𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑝} ∈ ℝ𝑝 is a vector of 𝑝 variables, trained to predict a

response variable 𝑌 . What sets this mathematical model apart from many mathe-

matical models is its peculiar layered structure, as represented in Figure 2.1.

5

2 Neural Networks

Figure 2.1: An abstract representation of a single-layered Neural Network architecture,
with 𝐾 = 5 neurons and 𝑝 = 4 input variables. The input layer con-
tains as many neurons as the number of independent variables fed into
the activation functions 𝐴𝑘, which compose the second hidden layer.
The last output layer might also contain many neurons: as a matter of
fact, themultilayered perceptron is among the fewmodels that natively
can output a multivariate response.

6

2.1 Multi-layered perceptron structure and functional model

Each “neuron” or “perceptron” represents a function thatbehavesas a computational

unit; a set of perceptrons is densely stacked to make a layer. As an example, a ba-

sic structure such as the one depicted in Figure 2.1 is made of an input layer, to

which each of the variables or features is fed and is passed forward through the con-

nected network of one ormore hidden layers, also composed of𝐾 neurons stacked

together. This computational architecture can be expressedmathematically as:

𝑓(𝑋) = 𝛽0 + 𝐾∑𝑘=1 𝛽𝑘𝐴(𝑝)𝑘 (𝑋)
= 𝛽0 + 𝐾∑𝑘=1 𝛽𝑘𝑔(𝑤𝑘0 + 𝑝∑𝑗=1 𝑤𝑘𝑗𝑋𝑗) (2.1)

where𝐴(𝑗) = 𝑔(𝐴(𝑗−1)), for 𝑗 = 2, … , 𝑝 and𝐴(1) = 𝑔1(𝑋).
Figure 2.2 represents themathematical operation happening during the flow of in-

formation from one layer to a single activation, also introducing the common nota-

tion used for these models: the superscript 𝑝, as in𝐴(𝑝), indicates the layer whom
the neuron belongs to, while the subscripts of theweight, as in𝑤𝑚,𝑛, points to the
destination layer𝑚 and the original activation𝑛.
The functions𝐴(𝑗)𝑘 , for𝐾 = 1, … , 𝐾 , are theso-callednonlinear “activations”. The

nonlinearity of 𝑔(𝑋), with 𝑔𝑗 being a map fromℝ𝑚𝑗 → ℝ, for 𝑗 = 0, 1, … , 𝑝, is
essential; otherwise, the model will revert to a multivariate linear regression. Fig-

ure 2.3 shows some examples of well-known and used activation functions. They

receive as input theweighted sum, adjusted by a bias, of each of the preceding layer

neuron’s output, and return a single number. The artificial neural network learns by

scaling the connections and applying biases to them as the stream of data is passed

forward into the activations, resulting in an output that travels from one layer to

the next: the final prediction𝑌 is fed to a loss function 𝐽(𝑤𝑡; 𝑋, 𝑌) that allows to
iteratively learn patterns and structure in the data. The choice of the loss function

depends on the application: for example, amean squared error function will lead to

forecasting the mean value of the distribution, while the mean absolute error fore-

casts themedian.

Stated differently, this means that the network discovers the optimal weights and

biases to accomplish thegiven taskbyminimizing the loss. The chosen loss function

is algorithmically minimized through gradient descent1 and backpropagation.

1In a frequentist interpretation of the learning process, this is equivalent to an MLE or MAP esti-
mate.

7

2 Neural Networks

Figure 2.2: Feedforward activation for a single neuron. This figure unpacks the no-
tation of Equation 2.1 for a single activation. The weights 𝑤𝑙𝑗 and bi-
ases𝛽(0)𝑗 are applied to each connection and fed to a nonlinear function𝑔(⋅). Some connections matter more than others: hence, the weights
can be conceptualized as a signal of the relative importance of a partic-
ular connection, while the biasesmake the activationmeaningful only if
it reaches a certain threshold.

8

2.1 Multi-layered perceptron structure and functional model

Figure 2.3: Activation functions examples. For the original perceptron, Rosenblatt
(1957) chose the sign function; a choice discardedby later development
because of its derivative being equal to 0 (Goan and Fookes 2020, p 6).
When using the logistic function (sigmoid) in a single-layered network as
Figure 2.1, Equation 2.1 is equivalent to a logistic regression. This func-
tion has been a common choice, along with the Hyperbolic Tangent, as
the activation 𝑔(⋅) in the earliest investigations of neural network train-
ing, a choice justified by its grounding in probability theory and statisti-
cal learning; however, it was discarded because of the so-called vanish-
ing gradient problem, caused by having gradients in the range [−1, 1],
which caused inefficient and slow learning. They have been replaced by
theREctified Linear Unit (RELU) and its leaky variation in gradient-based
learning such as backpropagation.

9

2 Neural Networks

The gradient descent consists of an iterative update of the parameters as the net-

works learn from the available data byminimizing the error. In practice, the output

of themodel is computed for the current parameter settings (step 𝑡): partial deriva-
tives for all parameters are found and thenused to update eachparameter, which is

thenused to repeat this algorithm in the following step (step 𝑡+𝑖), until a givenpre-
cision threshold ismet and theperformanceof themodel is not improving anymore.

Mathematically:

𝑤𝑡+𝑖 = 𝑤𝑡 − 𝛼𝜕𝐽(𝑤𝑡; 𝑋, 𝑌)𝜕𝑤𝑡 (2.2)

Where𝛼 defines the learning rate, which is themagnitude of the step of that partic-

ular iteration of the gradient descent.

The backpropagation, introduced byRumelhart, Hinton, andWilliams (1986), is a su-

pervised learning algorithm that updates theweights andbiases for each layer of the

network, from the output to the first hidden layer. The derivative of Equation 2.1 is

computed through the application of the chain rule: the gradient calculation in the

network moves backward, starting from the final layer’s weights and ending with

the first layer’s weights. Partial gradient computations from one layer are recycled

to compute gradients for the previous layer. This backward flow of error informa-

tion enables efficient gradient computation at each layer, contrasting with the less

efficient method of computing gradients for each layer separately.

Activations 𝐴𝑘 with a value close to zero are silent, while those close to one are

firing: all the nonlinear transformation happening inside this architecture allows to

capture complex patterns and this is where the terminology refers specifically to

the conceptual model that led to this computational structure: we are modeling

the mechanism of a biological neural network, which learns by making connections

and reacting to a specific phenomenon and by identifying complex, often nonlinear,

patterns.

Metaphorically, each layer is an abstraction that allows mimicking the biological

neurons that activate if its connection reaches a meaningful threshold and the

learned pattern of connections recognizes learned patterns, creating specific

sequences of activations that identify structure in the data.

10

2.2 Deep learning models as universal approximators and their limits

2.2 Deep learning models as universal
approximators and their limits

The initial model, pioneered by Rosenblatt (1957) is notably a hardware implemen-

tation of these concepts, designed to perform a basic binary classification task.

While the abstraction seemedpowerful and the application promising, the fact that

such a robot could not be trained to recognize awide variety of patternswas imme-

diatelyestablished: apaperbyMinsky (1969)demonstrates that the single-layered

network (themost basic structure) is only capable of learning linearly separable pat-

terns. The initial intuition that brought together this peculiar computational archi-

tecturemet a seemingly unbeatable obstacle, standing aside and lettingmore pow-

erful and less expensive methods be at the forefront of research. Because of this,

the field of neural networks stagnated for many years before it was realized that

feed-forwardneural networkswith twoormore layers, often knownasmultilayer per-

ceptrons, can classify non-linearly separable patterns classes.

Hornik, Stinchcombe, and White (1989) demonstrated that a standard multilayer

feedforward network utilizing just one hidden layer with a finite number of neurons

is a universal approximator: provided that sufficiently many hidden units are avail-

able, this kind of model can approximate general mappings from one finite dimen-

sional space to another, approximating continuous functions on a compact subset

ofℝ𝑛.
This huge step forward led to the development of deep learning, named to indicate

the multilayered structure of modern applications of neural networks, able to es-

tablish a new benchmark of accuracy on many different tasks, disrupting the fields

of languagemodeling and computer vision: applications are endless.

Hornik, Stinchcombe, and White (1989, 360) attribute failures in applications,

given that sufficiently many hidden units are available, to “inadequate learning,

insufficient number of hidden units, presence of a stochastic, rather than deterministic,

relation between input and target.”. However, these are not the only shortfalls of

deep learning.

When fed randomly generated noise, such a network will confidently output a re-

sult, even though the input contains only noise: while the metaphor of “picking up

edges and patterns” is indeed useful in conceptualizing what is happening inside

the algorithm, it is just an abstraction. A deep learning perceptron is a so-called

black box: the connections it makes and the structure it learns are not a guarantee

11

2 Neural Networks

of precision and performance and are not interpretable; often, they are incompre-

hensible.

As an example, a multilayered feed-forward neural network trained on theMNIST

dataset (Deng 2012), which can be considered the "Hello World" of deep learn-
ing applications consistently recognizes digits even if fed data randomly generated

from a standardGaussian distribution, notwithstanding themodel accuracy on the

test set of 97.46%. In other words, it seems that it recognizes a structure, the ab-

stract “edges” and “patterns”, even if there are none.

Figure 2.4: From Goan and Fookes (2020, 4), a comparison of a neural network to
traditional probabilistic methods for a regression task, with no training
data in the purple region. On the left: Regression output using a neu-
ral network with 2 hidden layers; on the right: Regression using a Gaus-
sian Process framework, with a grey area representing ±2𝜎 from the
expected value.

What is even worse, it does not give any indication of the uncertainty associated with

its prediction; as a matter of fact, it is incapable of quantifying it. Quoting Jospin et

al. (2022, 31):

“The finalmodelmight also generalize in unforeseen and overconfidentways

on out-of-training-distribution data points. This property, in addition to the

12

2.3 Sources of uncertainty

inability of ANNs to say ‘I don’t know’, is problematic for many critical appli-

cations.”

While Hornik, Stinchcombe, and White (1989) proved the endless possibilities,

they correctly pointed out that the model might often fail in the presence of a

stochastic relationship between predictors and response: however, uncertainty

and stochasticity are a natural aspect of many important phenomena for which

such a powerful tool could be applied for predicting out-of-sample.

The lack of an indication of predictive uncertainty and its inability to approximate

the underlying probabilistic data-generating process is an inherent pitfall of the

functional model nested inside the deep layered perceptron: what is needed is a

stochastic model.

2.3 Sources of uncertainty

Missing the capability to reason about uncertainty, ANNs show to possess an

Achille’s heel; while powerful and apt to a plurality of challenging applications, mim-

icking the computational abilities of higher life forms and their biological neurons,

it is necessary to mutate the mathematical, algorithmic approach into a statistical

model to give these models reliable uncertainty estimates, interpretability, and

robustness.

Quoting Goan and Fookes (2020, 36):

“It is not possible to model all variables within […] a highly complex system.

This is accompanied by imperfect models and reliance on approximate in-

ference, it is important that our models can communicate any uncertainty

relating to decisions made. Wemust acknowledge that in essence, our mod-

els are wrong. This is why probabilistic models are favored for such scenar-

ios; there is an underlying theory to help us deal with heterogeneity in our

data and to account for uncertainty induced by variables not included in the

model.”

Uncertainty canbeunderstoodasaleatoricor epistemic. In anexample fromSpiegel-

halter (2019), the difference can be understood as the alea that exists in two differ-

ent situations: before one coin is thrown and after when the result is hidden from

13

2 Neural Networks

the observer. In the first case, the outcome is determined by chance: aleatoric un-

certainty. In the second case, the outcome is determined, it already happened: it is

just unobservable.

Charnock, Perreault-Levasseur, and Lanusse (2020, 2) point out many different

sources of uncertainty:

1. the choices in network architecture;

2. the methods for fitting networks;

3. the cuts in sets of training data;

4. the uncertainty in the distribution of realistic data;

5. and lack of knowledge about the physical processes that generate such data.

Some of these, are unavoidable and cannot be reduced through greater under-

standing: they are aleatoric sources of uncertainty, intrinsically linked to the

stochastic nature of the observed phenomena. Some other aspects however can

be investigated through a process of observation and understanding: for example,

we can learn the property of the data-generating process, or find a distribution

that describes how likely a particular outcome is, and test whether such a model

is likely or not given the data at our disposal. This kind of uncertainty is epistemic,

caused by a lack of data, and it is reducibile. An often misunderstood source of

epistemic uncertainty is linked to the hyperparameters and overall design choices

of the model: the design of the neural network, the way it is trained, the choice

of the cost function, and all other aspects that determine the capabilities and

architecture of the ANN.

While it is easy to conceptually separate these two classes, this does not happen

with the network output:

“There is no separation between aleatoric and epistemic uncertainty and

no knowledge of how likely (or well) a new example of data is to provide a

realistic prediction. It is possible, though, to quantify this epistemic error

caused by our lack of knowledge about the properties of a neural network,

and characterizing this uncertainty can allow us to perform reasoned

inference.” (Charnock, Perreault-Levasseur, and Lanusse 2020, 5)

Treating ANNs as statistical models yields a powerful framework that allows such

networks to make statements of inference, “reducing the lack of trust that is inher-

ent in the standard deep learning setup”. A seminal paper by Tishby, Levin, and Solla

(1989) introduced twopowerful concepts: firstly, it gave a statistical interpretation

of the loss function, showing that minimizing the MSE is equivalent to finding the

14

2.4 Specialized architectures for time series

MLE of a Gaussian. Secondly, it showed how the Bayesian paradigm provides a rig-

orous framework to analyze and train uncertainty-aware neural networks by speci-

fying a priordistribution over theweights and learning theposterior; more generally,

it paved theway to applying both traditional inferential techniques and specialized

algorithms to support the development of probabilistic neural networks (Jospin et

al. 2022, 30). An introduction to Bayesian Neural Networks is presented in Sec-

tion 3.

2.4 Specialized architectures for time series

The deep multi-layer perceptron is a general-purpose architecture. While it can

learn to forecast time series, it suffers from several limitations: in particular, the

size of the input directly affects the number of parameters of the network, which

might negatively affect learning speed and overall performance (Sezer, Gudelek,

and Ozbayoglu 2020, 3). Moreover, time dependencies cannot be efficiently

modeled because data are treated as independent observations and the initial

data are transformed2 during the learning process: the network is not able to

replicate dynamic behavior over a time dimension as each observation is not

sequentially processed and therefore fundamental information is lost. For exam-

ple, as addressed by the papers from Ahmad et al. (2014) and Deb et al. (2017)

regarding modeling daily energy consumption, it would be relevant to capture

repetitive patterns that happen at a fixed frequency such as seasonality, or another

time-dependent behavior such as a trend; the ANN processes the information in

batches, or blocks, hence it is not able to recognize that the position of a particular

observation in the time-line sheds light on an aspect of the phenomenon that

needs to be captured to enhance the quality and precision of forecasts. Other

applications of ANNs to economic time series analysis include finance (Chen,

Pelger, and Zhu 2024), insurance (Kiermayer andWeiß 2021), andmacroeconomics

(Teräsvirta, Van Dijk, andMedeiros 2005).

Specialized architectures have been devised to properly capture the peculiarities of

learning patterns from a dynamic, ordered, sequence of events. The most used is

the Long-Short Term Memory (LSTM), which is built upon the Recurrent Neural

Network. The latter is in itself a powerful framework for sequential data, but:

2Inotherwords, the input isdiscardedasonly its transformationsarepassed throughthesequence
of layers.

15

2 Neural Networks

“LSTM and its variations along with some hybrid models dominate the

financial time series forecasting domain. LSTM, by its nature, utilizes

the temporal characteristics of any time series signal; hence, forecasting

financial time series is a well-studied and successful implementation of

LSTM.” (Sezer, Gudelek, andOzbayoglu 2020, 8).

However, being a variation of RNNs, an introduction to this foundational architec-

ture is necessary, before venturing into the specifics of LSTM functional models.

2.5 Recurrent neural networks

Recurrent Neural Networks are a basic specialized functional model built for se-

quencemodeling thanks to the introduction of “hidden units” or “states”, which store

the output data that is fed to the following one in addition to the new input. In

other words, the output of a layer can affect the input of the following one through

feedback, creating a storage vector of internal states that allows this architecture

to process sequences by accumulating information about the past.

This concept can be formalizedmathematically through Equation 2.5, which is styl-

ized graphically by Figure 2.5. A third dimension is appended to the bi-dimensional

array of features (columns) and observations (rows); one of them represents the

number of observations, with each characterized by a first dimension representing

the length of the sequence of data and a second dimension for the number of fea-

ture for each step. This sequences of vectors {𝑋𝑡}𝑇𝑡=1, with 𝑙 ∈ {1, 2, … , 𝑝} as
the number of features and𝑇 representing a time index, can be written as:

Time
↓↓↓↓↓↓↓↓ ⎡⎢⎣𝑥1,1 ⋯ 𝑥𝑝,1⋮ ⋱ ⋮𝑥1,𝑇 ⋯ 𝑥𝑝,𝑇 ⎤⎥⎦ (2.3)

As in Equation 2.1,𝐴𝑘 represents a non-linear activation function 𝑔(⋅) (Figure 2.3)
and 𝑌 is the final output of the network; ℎ𝑡, instead, is the hidden state at 𝑡 that
stores the output (a sort of “hidden prediction”), which is fed into the following ac-

tivation at 𝑡 + 1 along with the corresponding input x𝑡+1.ℎ𝑡 = 𝑓(ℎ𝑡−1, x𝑡;W, B,U) (2.4)

16

2.5 Recurrent neural networks

Figure 2.5: Recurrent Neural Network. On the left-hand side, is the so-called “folded”
representation, andon the right-hand side, is the “unfolded” structureof
the recurrent processing happening inside this specialized architecture.
The unfolded representation should not be confused with a sequence
of layers, as in Figure 2.2; they are instead a representation of the same
network but at different steps in time. The input is a sequence of vectors
having a single component{𝑋𝑡}𝑇𝑡=1 and the target is a single response.
The same collections of weights are used as each element is processed
and the output layer produces a sequence of predictions 𝑌 from the
current activation𝐴𝑇 , but typically only the last of these is of relevance.

17

2 Neural Networks

W,U, B arematrices that store the network parameters: the first for theweightsof
the input layer, the second for the hidden-to-hidden layers, the third for the output

layer. In this architecture all parameters are shared and updated when new obser-

vations are available, and therefore used to process each element of the series: this

introduces an element of persistence. We can write the activation function as:

𝐴𝑙𝑡 = 𝑔(𝑤𝑡0 + 𝑝∑𝑗=1 𝑤𝑗𝑡𝑥𝑗𝑡 + 𝑇∑𝑡=1 𝑢𝑙𝑡𝐴𝑙−1,𝑡) (2.5)

In this function, an accumulation mechanism allows capturing any dependence

between the observations, learning contextual information that can be used to

capture information that enhances the forecast produced by the last occurrence,

which is what we usually define as 𝑌 and that can be a sequence itself, allowing

forecasts of longer time windows:

𝑌 = 𝛽0 + 𝑇∑𝑡=1 𝛽𝑙𝑡𝐴𝑙𝑡 (2.6)

All the network parameters are updated using a recurrent algorithm called Back-

Propagation Through Time: as in a standard ANN, a gradient descent iterativelymin-

imizes a pre-selected loss function, following an algorithm similar to what has been

described inSection2.1,with themaindifferencebeing that thegradient isupdated

following a reverse sequential order, in parallel to what happens in the RNNwhen

data are processed in the forward-pass of the learning phase.

2.6 Long-Short Term Memory

Introduced by Hochreiter and Schmidhuber (1997), Long-Short Term Memory

(LSTM) is widely cited as the most common DL model for time series forecasting

by Han et al. (2021), especially in the context of predicting financial data. Quoting

Sezer, Gudelek, andOzbayoglu (2020, 21):

“According to the publication statistics, LSTM was the preferred choice of

most researchers for financial time series forecasting. LSTM and its varia-

tions utilized time-varying data with feedback-embedded representations,

resulting in higher performances for time series prediction implementations.

18

2.6 Long-Short TermMemory

Because most financial data, one way or another, included time-dependent

components, LSTM was the natural choice in financial time series forecast-

ing problems.”

This variation of Recurrent Neural Networks architecture has succeeded in many

fields of applications because of two limitingweaknesses of the standard structure

regarding an “insufficient, decaying error backflow” (Hochreiter and Schmidhuber

1997, 1):

1. Vanishing gradient.

2. Exploding gradient.

They result in the inability to model long range dependencies: over extended peri-

ods, the gradient for the weights, which are repeatedly multiplied by the hidden

state at each time step, tends to either diminish significantly (known as the vanish-

ing gradient problem) or increase enormously (known as the exploding gradient prob-

lem).

Han et al. (2021, 7836) states that RNNs often fail to learn information over 5-10

timesteps. However, many useful applications depend on the ability to model long-

term relationships. The feedback connection that stores recent representations of

events in the form of activations corresponds to a short-termmemory, while gradu-

ally updating theweights over time is akin to a long-termmemory. Both are present

in the Long-Short TermMemory architecture (1997), which is recurrent, gradient-

based, and (most importantly) enforces a constant error flow through the internal

states of specialized units, the memory cells, composed of input, output and forget

gates. This is also known as the Costant Error Carousel (CEC).

A separate state vector is used to determine whether to remember or forget what

is inside the hidden state: the memory cells are stacked together to form an LSTM

layer, which regulates the information flow, allowing the architecture to feedback

the information over arbitrary time intervals. The input gate manages the informa-

tion incorporated into the cell, the output gate controls the flowof information out-

ward to the rest of the network, and the forget gate diminishes the activation of the

preceding timesteps (Han et al. 2021, 7836).

The functional formof the forward pass can be described through the following set

of equations: let 𝑓𝑡 be the forget gate’s activation vector, 𝑖𝑡 the input gate’s acti-
vation vector, 𝑜𝑡 the output gate’s activation vector, 𝑐𝑡 the cell state vector, and
keeping the same terminology of Equation 2.1 and Equation 2.53:

3⊗ represents the element-wise (Hadamard) product.

19

2 Neural Networks

Figure 2.6:Diagram of a Long-Short Term Memory unit Costant Error Carousel, which
replaces the ordinary recurrent node illustrated in Figure2.5, with a de-
tailed inside informationflowat time 𝑡. Ahidden stateℎ𝑡−1, alongwith a
cell state 𝑐𝑡−1, as computed one lag before, are combined to𝑥𝑡 and fed
inparallel todifferent activation functions, suchas the sigmoid𝜎 and the
Hyperbolic Tangent𝑇 𝑎𝑛ℎ, to update the cell and hidden states at 𝑡, to
be used in the next step of the recurrent model. Each flow is labelled
accordingly to equations from Equation 2.7 to Equation 2.11.

20

2.6 Long-Short TermMemory

𝑓𝑡 = 𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝛽𝑓) (2.7)

The forget gate determines if the internal state should be flushed.

𝑖𝑡 = 𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝛽𝑖) (2.8)

The input gate plays a crucial role in deciding whether a specific input should influ-

ence the internal state of the network. It governs the extent to which the value

of the input node should be incorporated into the current memory cell’s internal

state.

𝑜𝑡 = 𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝛽𝑜) (2.9)

The outputgatedetermines if the internal state of a givenneuron shouldbe allowed

to impact the cell’s output.𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑔(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝛽𝑐) (2.10)

ℎ𝑡 = 𝑜𝑡 ⊗ 𝑔(𝑐𝑡) (2.11)

This formulation creates amechanism to determinewhen a hidden state should be

updated and when it should be reset; this allows us to avoid updating the hidden

state after if necessary and to skip irrelevant observations.

LSTMs are a specialized version of RNN: all the other aspects of this functional

model are the same, starting from the hyperparameters to the use of BPTT to learn

the correct weights and biases for the prediction task. Even if they are more ad-

vanced, they process data sequences in the same way and hence have the same

structure to their layers, differing only in the specific operations it applies at each

time step as detailed by Equation 2.7, Equation 2.8, Equation 2.9, Equation 2.10,

Equation 2.11, while outperforming both the ANN and standard RNN in sequence

modeling applications.

Deep learning models often use LSTM networks to tackle complex tasks such as

speech and handwriting recognition. They are most commonly used in time-series

data contexts such as Natural Language Processing (NLP), language modeling,

21

2 Neural Networks

translation, speech recognition, sentiment analysis, predictive analysis, and finan-

cial time series analysis (Sezer, Gudelek, and Ozbayoglu 2020, 8). By integrating

both short and long-term memory, LSTM networks improve their efficacy in

time series data interpretation, as demonstrated by their success in language

translation: this is the reason why it is the most logical choice as the functional

model for a Bayesian Neural Network able to effectively forecast time series.

2.7 Review of recent developments for Neural
Networks

Along with thesemodels, other structural variations of neural networks have been

applied for forecasting time series; in this section, a brief examination of the char-

acteristics of themost commonmodelswill be provided, following the taxonomy of

Sezer, Gudelek, and Ozbayoglu (2020) and Han et al. (2021), along with a review

of amore recent development represented by themulti-head attention-based archi-

tecture known as the transformer (Vaswani et al. 2017).

Convolutional Neural Networks (CNNs), developed by LeCun, Bengio, et al. (1995)

building upon the work in neurobiology of Hubel andWiesel (1959), are a class of

ANNs inwhich specialized layers based on convolutional operations are used for fea-

ture extraction. As withmany classes of NNs, their overall architecture follows the

same structure of Figure 2.1; however, the introduction of convolutional filters and

pooling layers allowed this model to set new benchmarks in the field of computer vi-

sion, arguably being the main protagonists along with LSTM for the so-calledDeep

Learning revolution of the late 2000s, in which DL-based models started to outper-

form other machine learning models.

While they have been applied to time series forecasting in both simulated and

applied scenarios, they excel in classification tasks. Quoting Han et al. (2021,

7836):

“To the best of our knowledge, we found that more works utilize the CNN

architectures for classification rather than prediction of the next value with

multivariate time series. […] Compared with the extensive application of im-

age recognition, using CNN for time series prediction still requires further

studies to demonstrate its superiority in learning deep features to obtain bet-

ter performance.”

22

2.7 Review of recent developments for Neural Networks

Figure 2.7: Topic-models heatmap from Sezer, Gudelek, and Ozbayoglu (2020, 21).
On the horizontal axis is a list of topics related to financial time series
forecasting; on the y-axis is a list of models; the cell color gradient de-
tails the number of applications of a givenmodel for a specific topic. Re-
currentNeuralNetworks (RNN) include theLSTMarchitecture andare
by far the most used. DMLP stands for Deep Multi-Layered Perceptron,
which is another term for the models described in Section 2.1 and Sec-
tion 2.2.

23

2 Neural Networks

TheDeepBelief Network (DBN) consists of a stacked architecture ofRestricted Boltz-

mannMachines (RBMs). RBMs are a class of stochastic models typically used in un-

supervised learning (Qiu et al. 2014) for tasks such as dimension reduction, classifi-

cation, feature learning, and collaborative filtering (Salakhutdinov, Mnih, and Hin-

ton 2007). Their power comes from their capacity to identify latent patterns without

supervision.

However, RBMs represent a training difficulty because there are no cost-effective

methods for calculating the log-likelihood, despite the existence of good gradient

estimators (Sezer, Gudelek, and Ozbayoglu 2020, 5); while they have been more

widely applied than other models for predicting time series (Hrasko, Pacheco, and

Krohling 2015), “optimization techniques are still highly demanded to reduce the com-

putational cost this deep model, especially for ones exhibiting ensemble structure” Han

et al. (2021, 7839).

In the paper “Attention is all you need”, Vaswani et al. (2017) created a novel archi-

tecture that, unlike the LSTM, does not have a recurrent structure; instead, it uti-

lizes the positional encoding added in the input embeddings to model the sequence

information in a so-called “self-attention” module, allowing it to capture long-range

dependencies and extract semantic correlations among elements in a long sequence.

The transformer is among themost promisingmodels for sequence processing and

it is already setting newbenchmarks in natural language processing, computer vision,

and speech modeling (Wen et al. 2022).

Still, as detailed in Zeng et al. (2023, 11126), its self-attentionmechanism is permu-

tation invariant, resulting in a loss of temporal information: the ordering of the data

points, as argued in this chapter’s introduction, contains information that should

not be discarded. As a result, this very advanced model underperforms even sim-

pler linear models in the context of long-term time series forecasting: hence, fur-

ther research and experimental validation are needed before applying this model

in real-world scenarios, as this thesis will do in Section 4.

24

3 Bayesian Neural Networks

These powerful functional models paved the way for many great achievements in

the field ofArtificial Intelligence. They are, however, still missing the ability to effec-

tively model uncertainty. Bayesian inference is a powerful framework to transform

multi-layered perceptrons into statistical models able to quantify uncertainty; fur-

thermore, using a prior to integrating out the parameters to average across many

modelsduring traininggivesa regularisationeffect to thenetwork toavoidoverfitting

issues, which are commonwith deep learning models.

The following sections detail themain stochasticmodel behind theBayesianRecur-

rentNeuralNetwork, createdbyFortunato, Blundell, andVinyals (2017), before in-

vestigating the main applied Bayesian methods to train Artificial Neural Networks,

allowing them to express uncertainty through their parameters.

Section 3.1 reviews the literature about Bayesian Neural Networks and details

their statistical model. Section 3.2 introduces the Markov Chain Monte Carlo

(MCMC) class of methods and their relevance to Bayesian deep learning, while

Section 3.3 details one of the fundamental tools for obtaining approximate

Bayesian estimates of the intractable evidence, the variational inference based

Bayes-by-backprop algorithm.

While the original model employs variational inference to train the network (Fortu-

nato, Blundell, and Vinyals 2017, 2), MCMCwill also be used in the simulated sce-

narios to compare the relative performance and learning time, ceteris paribus. Sec-

tion 3.4 reviews more recent developments in the Bayesian modeling of NNs and

Section 3.5 concludes this section by showing the performance of a trained model

inpredictingbothdynamically andstaticallywith simulateddatasets, before testing

themodel in a realistic scenario in Section 4.

25

3 Bayesian Neural Networks

3.1 From functional to stochastic models

A method for comprehending and measuring the uncertainty related to deep neu-

ral network predictions is provided by Bayesian statistics. In this new setting, the

parameters of the network are treated as random variables: it is a logical choice as

we do not know their true value, but we can use the available information, in the

form of the observed data, to learn and discover a distribution of these parameters.

Inferring the values of unknownmodel weights based on the available information

involves solving the problem of inverse probability, which is accomplished through

the application of the Bayes theorem.

Figure 3.1: Comparison between regular and Bayesian Neural Networks. While the
overall architecture stays the same and is similar to the ANN repre-
sented in Figure 2.1, the main difference is in the way the parameters
are interpreted. While in the regular setting the observed data are con-
sidered as generated froma randomprocess and the parameters have a
true value to be discovered, the Bayesian approach treats these latent
parameters as random variables of which we want to learn a distribu-
tion, conditional on the what we can observe in the training data.

Since Bayesian and regular NNs share the same architecture, or functional model,

activations, cost functions, layers, and overall modeling choices; (Figure 3.1), then

we are still dealing with a non-linear, highly complex function. To avoid confusion,

26

3.1 From functional to stochastic models

wewill refer to the parameters of the BNNwith the symbol 𝜃.
Goan and Fookes (2020, 9) explains how the Bayes theorem allows us to learn the

distribution of these parameters: a stochasticmodel is chosenwhen theweights are

treated as hidden or latent variables. While we cannot directly observe their distri-

bution, we can represent a distribution of a possible parameter choice 𝜃 in terms
of observed probabilities, resulting in the distribution of model parameters condi-

tional on the data we have seen. This is the posterior distribution: mathematically,𝑝(𝜃|𝐷). 𝐷 = (𝐷𝑥, 𝐷𝑦) represents the observations, where𝐷𝑥,𝐷𝑦 denote the
training inputs and labels, respectively.

What we can observe before training the model is the joint distribution of data and

weights, which is defined by our prior beliefs 𝑝(𝜃) in the predictive power of the
model over the hidden variables and the likelihood 𝑝(𝐷𝑦|𝐷𝑥, 𝜃) and can be writ-
ten as:

𝑝(𝜃, 𝐷) = 𝑝(𝜃)𝑝(𝐷𝑦|𝐷𝑥, 𝜃) (3.1)

The choice of architecture andprior comes into play bydefining the likelihood term:

in particular, the prior distribution should be specified to incorporate the belief as

to how the weights should be distributed, before seeing any data. Putting every-

thing togetherandassuming independencebetween themodelparametersand the

input, the Bayes theorem is then applied to obtain the posterior distribution over

themodel weights:

𝜋(𝜃|𝐷) = 𝑝(𝜃)𝑝(𝐷𝑦|𝐷𝑥, 𝜃)∫𝜃 𝑝(𝜃′)𝑝(𝐷𝑥|𝐷𝑦, 𝜃′)𝑑𝜃′ ∝ 𝑝(𝜃)𝑝(𝐷𝑦|𝐷𝑥, 𝜃) (3.2)

where∝ denotes the proportionality symbol. ∫𝜃 𝑝(𝜃)𝑝(𝐷𝑥|𝐷𝑦, 𝜃)𝑑𝜃 represents
the evidence that the parameterized distribution accurately describes the distribu-

tion of some event, or 𝑝(𝐷).
BayesianNeural Networks hence are stochastic artificial neural networks: since they

have random variables 𝜃 workings as parameters, they can obtain uncertainty esti-
mates by comparing the predictions of multiple sampled model parametrizations;

this peculiarity alsomakes them a special case of ensenble learning. The uncertainty

will be higher when these predictions disagree; most importantly, it solves the co-

nundrum detailed in Section 2.3, as Equation 3.2 offers a natural framework to dis-

tinguish between aleatoric uncertainty, or the probability of observing a given out-

27

3 Bayesian Neural Networks

putgiven the input and thechosenparametrizationof themodel𝑝(𝐷𝑦|𝐷𝑥, 𝜃), and
epistemic uncertainty, or the probability of the chosen parametrization given the

available observations 𝑝(𝜃|𝐷).
There is however a huge issue: the Bayesian posterior for a neural network archi-

tecture is a highly dimensional and non-convex function. In particular, the evidence

is intractable both from an analytical and a computational point of view for all but

the simplest cases, as it requires computing the marginal likelihood of every possi-

ble parametrization of the model.

Notwithstanding the intractability of∫𝜃 𝑝(𝜃′)𝑝(𝐷𝑥|𝐷𝑦, 𝜃′)𝑑𝜃′ that could poten-
tially hinder the feasibility of this kind of stochasticmodeling, approximate solutions

can be obtained through specialized techniques. These techniques borrow either

from traditional Bayesian statistics, such as:

1. Markov ChainMonte Carlo,

2. Variational Inference,

3. Empirical Bayes.

or from a re-conceptualization of deep learning algorithms, fine-tuned to allow

for stochastic modeling; in particular, the following Section 3.3 and the model

applied in Section 3.5 will use the Bayes-by-backprop, which adapts the gradient

backpropagation of Equation 2.2 to a stochastic setting. Even if these solutions

are indeed simplifications and lead to only approximate solutions, as detailed

by Charnock, Perreault-Levasseur, and Lanusse (2020, 42), “recent research has

also shown that being only approximately Bayesian is sufficient to achieve a correctly

calibrated model with uncertainty estimates” (Jospin et al. 2022, 40).

Empirical Bayes, which in synthesis consists of learning the prior and posterior after-

ward, “is a valid approximationwhen the dimension of the prior parameters being learned

is significantly smaller than the dimension of themodel parameters” (Jospin et al. 2022,

42). It mainly deals with adaptations of algorithms such as the Bayes-by-backprop;

hence, the following sections will only deal with VI andMCMC.

3.2 Markov Chain Monte Carlo and the
Metropolis-Hasting algorithm

One of themain differences between BNNs andANNs is in the learning phase. The

performance of the non-probabilistic models is strictly dependent on it and, espe-

28

3.2 Markov Chain Monte Carlo and theMetropolis-Hasting algorithm

cially for sequence modeling, proper tuning is essential. As an example, choosing

the dimension of the window of input data that are fed through a recurrent struc-

ture such as the one depicted in Figure 2.5 is fundamental in learning the correct

weights and dramatically improves the performance of the model. Even for a stan-

dard feed-forward dense network a learning phase consisting of training the net-

work on batches of data is an essential part of model fitting and requires time and

effort.

WithBNNs, instead, the learningphase isnot required; theonly requirement is sam-

pling the posterior and doing model averaging (Jospin et al. 2022, 39). The follow-

ing pseudocode details the steps of the algorithm which translates the statistical

framework detailed in Section 3.1:

Algorithm 1 Inference procedure for a BNN

Define 𝑝(𝜃|𝐷) = 𝑝(𝜃)𝑝(𝐷𝑦|𝐷𝑥,𝜃)∫𝜃 𝑝(𝜃)𝑝(𝐷𝑥|𝐷𝑦,𝜃)𝑑𝜃 ;
for 𝑖 = 1 → 𝑛 do

Draw 𝜃𝑖 ∼ 𝑝(𝜃|𝐷);
y𝑖 = Φ𝜃𝑖(x);

end for
return𝑌 = {𝑦𝑖|𝑖 ∈ [0, 𝑁)}, Θ = {𝜃𝑖|𝑖 ∈ [0, 𝑁)};

Because the evidence termcanonlybeapproximated, reliable predictions shouldbe

based on accurate approximations of the posterior (Goan and Fookes 2020, 17).

The most important approach to this solution is the Markov Chain Monte Carlo, a

general classofmethods for samplingarbitrary and intractabledistributions. While

Variational Inference (VI) prevails as themost common approach for BNNs special-

ized in time series forecasting, as can be seen from Table 3.1, it does not allow sam-

pling fromthe exactposteriordistribution, asdetailed inSection3.3; hence, a gain in

efficiency and performance is tradedwith a lack of knowledge about how close the

chosen approximation is from the desired target (Charnock, Perreault-Levasseur,

and Lanusse 2020, 31). As argued in one of the papers that first proposed varia-

tional methods (Hinton and Van Camp 1993, 12), the best tool to sample from the

exact posterior is theMCMC.

Themain ideabehind theMCMCfamily of algorithms is basedonbuilding aMarkov

chain of independent samples with such properties that they can be attributed as

belonging to the posterior distribution, then applying Monte Carlo integration for

prediction. Ergodicity is fundamental: it should be possible to move from any possi-

ble state toanother in somefinitenumberof transitionsandno long-termrepeating

29

3 Bayesian Neural Networks

cycles should occur. However, each consecutive sample is correlatedwith the next;

the transition probability is simply dependent on the prior state, and the chains ex-

hibit long-range correlation. States from some target distribution can only be re-

tained as samples if they are physically uncorrelated; hence, the initial steps are

usually out of distribution and thus should be discarded.

In otherwords, convergence is not guaranteed unless an infinite number of steps is

taken to ensure stationarity; this is the reason why we can only use this technique

to obtain numerical approximations of the evidence.

Among all theMCMCmethods, themost relevant one for BNNs is theMetropolis-

Hasting algorithm (Chib andGreenberg 1995): its popularity derives from the fact

that it only requires a function 𝑓(𝑥) that is proportional to the exact probability
distribution𝑃(𝑥) fromwhich to sample from. This property allows us to deal with

the intractable part of the elsewhere easy-to-compute𝜋(𝜃|𝐷) (Equation 3.2).
This algorithm starts with a random guess 𝜃0 and then samples 𝜃′ around it from
a proposal distribution 𝑄(𝜃′|𝜃), usually a Gaussian, which works as a candidate
point: if this point is more likely according to the target distribution, it is accepted;

in the other case, it is either rejected or accepted with a certain probability (Jospin

et al. 2022, 40). As the algorithm proceeds, it adapts its proposal distribution

based on the past samples it has seen. If the proposed samples are consistently

accepted or rejected, the algorithm adjusts its proposal distribution to explore the

space more effectively: the algorithm repeats this process for many iterations,

gradually exploring the space of possible values and generating samples from the

target distribution. If 𝑄 is chosen to be symmetric, the acceptance probability 𝑝
can be simplified and the formula of the acceptance rate becomes:𝑝 = min(1, 𝑓(𝜃′)𝑓(𝜃𝑛)) (3.3)

The following algorithm details the step of the iterations:

Over time, the samples generated by the algorithm become increasingly represen-

tative: the algorithm is designed to converge to the correct distribution, meaning

that as the number of iterations increases, the samples becomemore accurate rep-

resentations of the target.

Themain limitationof this algorithm is that “above ahandful of parameters the compu-

tational time of Metropolis-Hasting becomes a limitation, meaning that it is not efficient

for sampling high dimensional distributions such as the posterior distribution of neural

30

3.3 Variational Inference and probabilistic backpropagation

Algorithm 2Metropolis-Hasting algorithm.

Draw 𝜃0 ∼ Initial probability distribution;
while𝑛 = 0 → 𝑁 do

Draw 𝜃′ ∼ 𝑄(𝜃′|𝜃𝑛);𝑝 = min (1, 𝑄(𝜃′|𝜃𝑛)𝑄(𝜃𝑛|𝜃′) 𝑓(𝜃′)𝑓(𝜃𝑛));
Draw 𝑘 ∼ Bernoulli(𝑝);
if 𝑘 then𝜃𝑛+1 = 𝜃′;𝑛 = 𝑛 + 1;
end if

endwhile

network parameters” (Charnock, Perreault-Levasseur, and Lanusse 2020, 19). This

lackof scalabilityexplains thepopularityofvariationalmethods for theapproximate

computation of the posterior, which will be introduced in the following section.

3.3 Variational Inference and probabilistic
backpropagation

Even though MCMC algorithms are, at least in principle, the better approach, as

they allow to sample the posterior and approximate it exactly given enough time,

twomotives explain the lack of widespread adoption of this class of algorithms.

The first consists of the requirement of an initial burn-in time before the Markov

chain converges to the desired distribution. All samples until the Markov chain is

stationary should be discarded because they can be out of distribution (Jospin et al.

2022).

The second is the fact that successive samples might be autocorrelated; to gather

roughly independent samples from the underlying distribution, a large set must be

created and subsampled. Moreover, This final collection of samplesmust be stored

after training: this weighs negatively on the feasibility of these methods because

of the computational resources required and undermines scalability to largermod-

els.

Variational inference dominates the field of probabilistic Neural Networks for

time series forecasting (Y. Wang et al. 2019, 10); the Bayesian Recurrent Neural

Networks (Fortunato, Blundell, and Vinyals 2017) along with all more recent

models listed in Table 3.1 use this approach to obtain estimates of the evidence.

31

3 Bayesian Neural Networks

Beal (2003) presents a unified variational Bayesian framework that approximates

the intractable computations in models with latent variables using a lower bound

on themarginal likelihood.

Quoting Goan and Fookes (2020, 13), “the machine learning community has continu-

ously excelled at optimization-based problems”; VI frames the problem of performing

inference as an optimization problem: having an intractable distribution as the one in

Equation 3.2, variational approacheswill attempt to solve an optimization problem

over a class of tractable distributions 𝑄 to identify a 𝑞𝜙 ∈ 𝑄 that is most similar

to 𝜋. Then, 𝑞𝜙, called the variational posterior, is used instead of 𝜋 to obtain an ap-

proximative answer: in practice, this is achievedbyassuming the formof the posterior

distributionandperforming optimization to find theassumeddensity that is closest to

the true posterior.

This “closeness”, or similarity, is measured using relative entropy through the

Kullback-Leibler (KL) divergence. Based on Shannon’s information theory (Shan-

non 1948), it measures the loss of information when approximating the posterior

distribution 𝜋(𝜃|𝐷) with the variational posterior 𝑞𝜙 and works as the objective

function that needs to be minimized with respect to the set of parameters 𝜙 that

characterizes a specific variational posterior. In the context of Bayesian inference,

the KL-divergence is computed as:

𝕂𝕃(𝑞𝜙‖𝜋) = ∫𝜃 𝑞𝜙(𝜃′) log(𝑞𝜙(𝜃′)𝜋(𝜃′|𝐷)) 𝑑𝜃′ (3.4)

where𝕂𝕃 = 0 implies that there is no loss of information, hence the two distribu-
tionsareequivalent, and𝕂𝕃 > 0 indicatesadegreeof information lost. While com-

puting the posterior is required to obtain this measure, in practice this is avoided

thanks to the following derivation of Equation 3.4:

∫𝜃 𝑞𝜙(𝜃′) log(𝑞𝜙(𝜃′)𝜋(𝜃′|𝐷)) 𝑑𝜃′ = 𝑙𝑜𝑔(𝑃 (𝐷)) − 𝕂𝕃(𝑞𝜙‖𝜋) (3.5)

The resulting quantity is known as the evidence lower bound (ELBO): the KL-

divergence is non-negative, hence the ELBO represents the lower bound to the

evidence𝑃(𝐷). Being log(𝑃 (𝐷)) only dependent on the prior and constant with
respect to the parameters 𝜃, maximizing the ELBO is equivalent to minimizing the

KL-divergence.

32

3.3 Variational Inference and probabilistic backpropagation

Optimization of the ELBO can be conductedwith variousmethods, themost popu-

lar being the stochastic adaptation of the gradient descent to variational inference

known as Stochastic Variational Inference (SVI) (Jospin et al. 2022, 40); introduced

byGraves (2011), it canbeapplied tomostANNs functionalmodels, as it integrates

with their standard architectures and training methods. However, further adapta-

tions are required for functioning in deep-layered neural networks, as stochasticity

stops backpropagation from functioning at the internal nodes of a network (Jospin

et al. 2022, 41).

The solution lies in a probabilistic backpropagation algorithm, also known as Bayes-

by-backprop (Blundell et al. 2015), which can be applied to differentiable functions

such as neural networks. The basic premise for this algorithm is a “reparametriza-

tion trick” that ensures that backpropagation (Equation 2.2) works as usual, even

thoughuncertainty is introduced in theweights of thenetwork, allowing tooptimize

a pre-defined objective function to learn a distribution on the weights of a neural

network.

The main idea is to use a random variable 𝜖 ∼ 𝑞(𝜖) as a source of noise not caused
by variational inference. As detailed in Jospin et al. (2022, 41), the parameter

space Θ is not sampled directly, but obtained through a deterministic transfor-

mation 𝑡(𝜖, 𝜙) such that 𝜃 = 𝑡(𝜖, 𝜙) follows 𝑞𝜙(𝜃). 𝜖 is sampled, changing at
each iteration, but can be considered a constant with regard to other variables:

because all other transformations are non-stochastic, backpropagation works as

usual for the variational parameters 𝜙, which means that it uses gradient updates
as in Equation 2.2 and it can readily be scaled using optimization schemes and

readily implemented with GPU-based processing (Blundell et al. 2015), as it

is common practice in the latest DL software libraries to greatly speed up the

learning phase.

The general formula for the ELBO (Equation 3.5), becomes:

∫𝜖 𝑞𝜙(𝑡(𝜖, 𝜙)) log(𝑃(𝑡(𝜖, 𝜙), 𝐷)𝑞𝜙(𝑡(𝜖, 𝜙))) | det(∇𝜖𝑡(𝜖, 𝜙))|𝑑𝜖 (3.6)

Blundell et al. (2015) use the fact that, if 𝑞𝜙(𝜃)𝑑𝜃 = 𝑞(𝜖)𝑑𝜖, 𝑡(𝜖, 𝜙) is invertible
with respect to 𝜖, the distributions 𝑞𝜙 and 𝑞(𝜖) are not degenerated; being𝑓(𝜃, 𝜙)
a differentiable function, then the ELBO gradient can be rewritten as:

33

3 Bayesian Neural Networks

𝜕𝜕𝜙 ∫𝜙 𝑞𝜙(𝜃′)𝑓(𝜃′, 𝜙)𝑑𝜃′ = ∫𝜖 𝑞(𝜖) (𝜕𝑓(𝜃, 𝜙)𝜕𝜃 𝜕𝜃𝜕𝜙 + 𝜕(𝜃, 𝜙)𝜕𝜙) 𝑑𝜖 (3.7)

The Bayes-by-backprop algorithm can be summarized by the following pseu-

docode:

Algorithm 3Bayes-by-backprop𝜙 = 𝜙0
for 𝑖 = 0 → 𝑁 do

Draw 𝜖 ∼ 𝑞(𝜖);𝜃 = 𝑡(𝜖, 𝜙)𝑓(𝜃, 𝜙) = log(𝑞𝜙(𝜃)) − log(𝑝(𝐷𝑦|𝐷𝑥, 𝜃)𝑝(𝜃));Δ𝜙𝑓 = backprop𝜙𝑓 ;𝜙 = 𝜙 − 𝛼Δ𝜙𝑓 ;
end for

3.4 Review of recent developments for Bayesian
Neural Networks

To introduce this brief examination of more recent probabilistic neural networks

applications to time series forecasting, the followingquote taken fromH.Wangand

Yeung (2020) survey’s abstract highlights againhow theyplay a fundamental role in

themore general push to integrate human-like intelligence in automatic systems:

“Acomprehensive artificial intelligence systemneeds tonot only perceive the

environmentwith different “senses” […] but also infer theworld’s conditional

(or even causal) relations and corresponding uncertainty”.

As addressed in the conclusion of Section 2.3 it is indeed fundamental to integrate

stochasticity into the neural network functional model if these powerful tools are

to be integrated into critical “intelligent” systems.

Bayesian Deep Learning models have flourished trying to bridge the advances of

deep learning and probabilistic inference on random variables and, focusing on

the main theme of this thesis, Table 3.1 presents a taxonomy of the leading more

recentmodels in the field. It can benoted that someof themost importantBig Tech

34

3.4 Review of recent developments for Bayesian Neural Networks

giants’ research centers have participated and are active in this research1: this is

an important indicator that this combination is ripe with practical business-related

applications, along with the theoretical insights.

Table 3.1: List of themore recent BayesianNeural Networks specialized in time se-
ries forecasting.

Model Reference

DeepAR Salinas et al. (2020)

DeepState Rangapuram et al. (2018)

Spline Quantile Function RNN Gasthaus et al. (2019)

DeepFactor Y.Wang et al. (2019)

All thesemodels follow the sameapproach explored in this thesis, merging anRNN-

basedperceptron component anda stochasticmodel able tohandle the conditional

relationships among variables: “an ideal forecasting model requires both efficient pro-

cessing of high-dimensional data and sophisticated modeling of different random vari-

ables, either observed or latent.” (H.Wang and Yeung 2020, 32).

TheDeepAutoRegressive (DeepAR) fromSalinasetal. (2020) is anLSTM-basedre-

current forecasting algorithm that belongs to the family of probabilistic deep learn-

ing models, specifically designed for time series and tailored to forecast inventory

demand, evenwith just a fewdata points. It works specifically to learn patterns and

dependencies between multiple series, such as many similar ones across a set of

cross-sectional units, by leveraging not only their historical values but also any rel-

evant contextual information, such as categorical features or time-related covari-

ates; moreover, it generates a full probability distribution over future time steps in

the form of Monte Carlo samples (Salinas et al. 2020, 3) that can be used to com-

pute consistent quantile estimates for all sub-ranges in the prediction horizon al-

lowing users to quantify uncertainty andmake informed decisions.

Deep State SpaceModels (Rangapuram et al. 2018) combine the flexibility and ex-

pressiveness of deep learning architectures with the structured and interpretable

representations of classical state spacemodels (SSM) by parametrizing a per-time-

series linear SSMwith a jointly-learned recurrent architecture. The most interest-

ing aspect of this model is its combination of the ability to process complex and

highly dimensional datasets, typical of deep learning, with the interpretability and

1In particular, Google (Fortunato, Blundell, and Vinyals 2017; Vaswani et al. 2017) and Amazon
(Salinas et al. 2020; Rangapuram et al. 2018; Gasthaus et al. 2019; Y.Wang et al. 2019).

35

3 Bayesian Neural Networks

the capability of explicitly incorporating structural assumptions, such as seasonal-

ity, typical of SSMs.

The probabilistic forecasting method developed by Gasthaus et al. (2019) com-

bines the modeling capacity of RNNs with the flexibility of a spline-based repre-

sentation of the output distribution. The main advantage of this approach is that

learning a non-parametric quantile function avoids having to specify a parametric

form of the observed data distribution beforehand (Gasthaus et al. 2019, 10); es-

pecially because choosing the wrong parametrization can have a profound effect

on the model performance, the quality of its forecasts, and its ability to handle ran-

domness.

The Deep Factor Model (Y. Wang et al. 2019), similarly to the DeepAR model, is

tailored to producing probabilistic forecasts for large collections of similar and/or

dependent time series, trying to marry the ability to handle complex patterns and

scalability to large datasets; to do so, it represents each time series, or its latent

function, as a combination of a global time series, which is handled by the deep learn-

ing part of the architecture, and a corresponding local model, which is stochastic,

tasked with capturing the individual random effects associated with each series (Y.

Wang et al. 2019, 2).

To conclude, the variety of structures and combinations that these four models

show the flexibility of Bayesian Neural Networks; as examined in Section 3.1,

Bayesian modeling can be used to adapt different functional perceptron-based

architectures to perform inference.

The following section will test the performance of one of the combinations of deep

learning and probabilisticmodelingwith simulated data from anAR(1) process and

a latent factor model.

3.5 Simulated examples

This section is dedicated to putting the proposed model to the test: is the

Bayesian Recurrent Neural Network able to produce accurate and sensible probabilistic

forecasts?

Also, different functional variations within the same stochastic models and pos-

terior approximations will be tested, along with the two different approximation

frameworks detailed in Section 3.3 and Section 3.2, to understand their respective

36

3.5 Simulated examples

influences on the models’ performances, therefore improving the understanding

of the model selection process and its hyperparameter tuning in preparation for

the following chapter, in which real data will be used.

This performance for point forecasts will be evaluated on both datasets using the

RootMean Square Error (RMSE) andMeanAverage Error (MAE); these indicators

will also be computed for two classical benchmarkmethods,mean and naïve, to pro-

vide grounding to the BRNN performance, along with the Winkler score (Winkler

1972) aimed at evaluating the computed intervals2. Moreover, coverage statistics

will be included to test not only the performance of point estimates, as is the usual

case with Neural Networks, but also to conduct a posterior predictive check, as the

Bayesian framework (Section3.1) allows togeneratea full distributionof estimated

values that can then summarized through scale or shape indexes, such as themean

or a set of quantiles. We are interested in comparing the credible intervals associ-

ated with every point estimate, computed using the posterior with𝛼 = 5% as the

significance level, and the out-of-sample data points. In particular, wewould expect≈ 95%of these test observations to fallwithin the computed intervals if themodel

is appropriate.

The simulations will be based on stochastic processes, which will be processed be-

forehand: after generating the synthetic data, they have been scaled and centered,

a standard practice in deep learning that ensures a speed-up of the learning pro-

cess. Both data-generating processes underpinning the simulated datasets have

been chosen to test whether the chosen BNN can capture complex signals while

excluding the noise components that can skew its prediction in different scenar-

ios that are common in time series forecasting; as anticipated, the insights derived

from the cross-validation and forecasting in this simulated setting will be used in

section Section 4 to choose the best structural and probabilistic form of themodel

that will forecast with real data.

The first simulation involves an𝐴𝑅(1) process defined as such:𝑦𝑡 = 0.8𝑦𝑡−1 + 𝜖𝑡, 𝜖 ∼ 𝑊𝑁𝑁(0, 1) (3.8)

with 𝑡 = 1, … , 1000. This process generates a stationary time series, as can be
seen in Figure 3.2; the autocorrelation (ACF) and partial autocorrelation (PACF)

2When observations are within the specified interval, theWinkler score equals the length of that
interval, implying narrower intervals correspond to lower scores. However, if an observation
lies outside the interval, a penalty is incurred proportional to the deviation of the observation
from the interval.

37

3 Bayesian Neural Networks

Figure 3.2: AR(1) simulation plots: on the top, a simple line chart representing the
resulting time series, with different colors to represent the train-test
split of the data points; on the bottom, the AutoCorrelation Function
(ACF) plot on the left-hand side and the Partial AutoCorrelation Func-
tion (PACF) plot on the right-hand side, with blue dashed lines corre-
sponding to confidence interval for the white noise hypothesis.

38

3.5 Simulated examples

functions are also included.

Figure 3.3: Latent factor simulation, as described by Equation 3.9: on the top, a sim-
ple line chart representing the resulting time series, with different col-
ors to represent the train-test split of thedatapoints; on thebottom, the
AutoCorrelation Function (ACF) plot on the left-hand side and the Par-
tial AutoCorrelation Function (PACF) plot on the right-hand side, with
blue dashed lines corresponding to confidence interval for the white
noise hypothesis.

The second simulation, instead, uses a latent factormodel to generate a sequential

set of observations, as described by the following equation:𝑦𝑡 = 0.1 × 𝑍𝑡⏟
Random Walk

+ 0.3 × sin(1.5𝑡 + 𝑈)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sinusoidal process

+ 𝜖𝑡⏟
White Noise

(3.9)

where𝑍𝑡 𝑖𝑖𝑑∼ 𝑁(0, 1),𝑈 ∼ 𝒰(0, 𝜋) and 𝜖𝑡 𝑖𝑖𝑑∼ 𝑁(0, 2). The resulting series is
plotted in Figure 3.3, along with the relative ACF and PACF.

The stochastic model underpinning the BNNs will be the same in every learning

process: first, the prior distribution has to be specified; for every following model,

a scale mixture of Gaussians for each network parameter has been chosen:

39

3 Bayesian Neural Networks

𝜉𝒩(0, 𝜎1) + (1 − 𝜉)𝒩(0, 𝜎2) (3.10)

The models have been trained with 𝜎1 = 1, 𝜎2 = 2, and 𝜉 = 0.5. For the priors
of the parameters introduced by the likelihood, a Gamma distribution with Γ ∼(2, 0.5) has been chosen to sample from, and the values for all parameters 𝜃 have
been initialized with a standard Normal distribution𝒩(0, 1).
Both Bayes-by-backprop (Section 3.3) and theMetropolis-Hasting (Section 3.2) al-

gorithms have been employed to obtain several samples from the predicted poste-

rior distribution; the first ran for either 104 (for multi-layered models) or 105 (for
single-layered models) epochs with the ADAM algorithm (Kingma and Ba 2014),

which optimizes the stochastic gradient descent (Equation 2.2) learning required

to minimize the ELBO (Equation 3.5) function and is commonly used in deep learn-

ing for large datasets and very noisy and sparse gradients.

The number of samples to obtain has been determined through cross-validation:

as foretold in Section 3.2 and Section 3.3, this sampling process is of foremost im-

portance in determining how well the exact posterior is approximated by the dif-

ferent approximation techniques. Hence, keeping the same basic functional form

constant3, these effects have been studied for both sampling processes.

Figure 3.4 shows the evolution of a Variational Inference-approximated predictive

posterior and Figure 3.5 for a Markov Chain Monte Carlo approximation for an

increasing number of samples. The difference inherent within these approaches is

made evident: while theVI-based approach reaches a good approximation in fewer

steps, theMCMCtakes105 samples to converge to a proposed distribution. While

in the former case, the overall computational time is impacted by the fact that the

underlying NN has to be trained, the latter quickly consumes higher resources,

considering also that the posterior has to be analyzed to obtain quantiles, interval

bounds, indexes and, if optimizations are not implemented while performing the

calculations on matrices that can quickly grow to contain millions of records this

phase could weigh heavily in the overall process.

Choosing a Recurrent Neural Network with layers composed of Long-Short Mem-

oryTermunits (Section2.6) implies also another fundamental hyperparameter: the

overall structure of the model. While a simple single-layered model will always be

trained in the following analysis, serving as a point-of-reference for the trade-off

between performance and computational resources, another cross-validation is

3A single-layered Bayesian Recurrent Neural Network.

40

3.5 Simulated examples

Figure 3.4: Evolution of the approximated posterior with an increasing number of sam-
pleswith a Variational Inference-based model. In each chart, grey lines
represent all forecasts, while the red line is the actual objective distri-
bution that we wish to forecast. Dashed lines, color-coded in the same
way, represent themedian point of both distributions. The same BRNN
has been trained and the resulting predictive posterior distribution has
been sampled to obtain a snapshot of the effect of increasing the num-
ber of samples. It can be seen that a quick convergence to a good ap-
proximation is reached within a range of 103 to 2.5 × 103 samples. In-
creasing the number of samples is not improving dramatically the over-
all shapeof thedistribution; however, the forecastedmedian converges
almost exactly at 104 samples.

41

3 Bayesian Neural Networks

Figure 3.5: Evolution of the approximated posterior with an increasing number of sam-
pleswith aMarkov Chain Monte Carlo-based model: as expected from
a theoretical point of view (Section 3.2), increasing the number of sam-
ples dramatically increases the accuracyof theprediction. In each chart,
grey lines represent all samples, while the red line is the actual objec-
tive distribution that we wish to forecast. Dashed lines, color-coded in
the sameway, represent themedian point of both distributions. A good
approximation is reached only for 105 samples, which increases signifi-
cantly theoverall computation time, and theapproximateddistributions
and their quantiles demonstrate a wide range of shapes and scales.

42

3.5 Simulated examples

needed to examine whether deeper functional models can outperform simpler

architectures, to understand whether adding complexity will lead to increased

performance ormight overfit the training data, weighting eventual benefits against

the increased costs of training such amodel.

Table 3.2: Performance indicators for different deep learning architectures of a Bayesian
Recurrent Neural Network. The number of activations indicates the num-
ber of LSTM (Section 2.6) units that compose the network’s topology.
The increasing number of parameters has no significant effect on the net-
work performance on the cross-validation set.

Activations Parameters RMSE MAE Winkler Score Coverage

1 30 0.5759098 0.4711644 2.723399 0.970

2 83 0.5779981 0.4733379 2.749886 0.976

3 160 0.5698022 0.4662353 2.728590 0.976

4 261 0.5803210 0.4741019 2.767175 0.970

5 386 0.5764124 0.4692083 2.787441 0.970

6 535 0.5845347 0.4760758 2.738011 0.964

7 708 0.5761679 0.4711341 2.763580 0.970

8 905 0.5769288 0.4755576 2.729739 0.970

9 1126 0.5763785 0.4714887 2.744778 0.970

10 1371 0.5782066 0.4754351 2.752156 0.976

Table 3.2 shows how increasing the number of activations, and consequently, the

number of parameters, has little effect on the network performance: this has a

twofold implication. On the one hand, complicating the structure of the model is not

worth the extra computational effort required, as it will lengthen the fitting process

without bringing a noticeable result. On the other hand, this confirms (Section 3)

that complex BayesianNeuralNetworks do not show the tendency to overfit the train-

ing data: their non-stochastic counterparts, instead, can dramatically overfit, bring-

ing overconfidence and variance, which leads to a failure in generalization, espe-

cially with layered architectures.

A deep learning model will nevertheless be trained to test this hypothesis: Are the

complications and extra effort that a more articulated network topology brings to the

learning process worth it, even when confronted with static and dynamic forecasts? It

is important to compare if and how including hidden layers and augmenting the

dimension of the hidden states makes the network able to capture more informa-

tion; if this is not the case, the cost in computational resources required to learn the

43

3 Bayesian Neural Networks

higher number of parameters and the accuracy improvement might lead to prefer

simplermodels. Thevariationson the recurrentLSTMstructure thatwill be trained

and their characteristics are summarised in Table 3.3, along with an identifier that

will allow us to point out their performance. Comparing the results of Table 3.2, a

number of 3 activations seems the best cut-off point, as it performs slightly better

than its peers, and will be used to forecast.

Table 3.3: Structure of the two models used to forecast the simulated datasets of
this section. The notation of the structure represents the type of unit
used in the layer, suchasLSTM, alongwith thecountof inputs andoutputs
as (number of inputs, number of outputs).

Identifier Structure Number of parameters

Simple BRNN LSTM(1, 1)→ Dense(1, 1)
14

Deep BRNN LSTM(1, 3)→ LSTM(3, 3)→ LSTM(3, 3)→ Dense(3, 1)

232

To summarise, a basic model with a single LSTM input cell will be pitted against a

deep learning model with two additional hidden layers, the best performer of Ta-

ble 3.2: the input layer will be composed of a single input unit and either one or

three output units, while the two intermediate hidden layers for the DL-based net-

work are composed of either one or three LSTM units for both inputs and output

connections. The final output layer will be a standard dense layer (Figure 2.2) that

summarises its input linearly through the identity function as the final, single acti-

vation; since the LSTM unit already performs a set of non-linear transformations

and we need to use the model in a regression setting, it is common practice to sim-

ply combine and scale the result of the second-to-last layer to obtain the required

prediction.

It is now time to test the two models and the different approximation methods.

Both dynamic and static forecasts on a test set have been performed, with a train-

test split of𝑁train = 825 and, respectively,𝑁test = 75 for the out-of-sample fore-
casts and 𝑁test = 175 for the dynamic scenario, in which the actual value of the

lagged independent variable is used for each subsequent forecast. The difference

in the dimension of the test sets underlines themore challenging environment pre-

44

3.5 Simulated examples

sented by the out-of-sample scenario, in which the ability of the network to gener-

alize is truly challenged, as none of the test sets is used until the final assessment.

In the dynamic setting, bothmodels outperform their benchmark, regardless of the

approximation used, showing exceptional capabilities to react to sudden shifts and

jumps of the simulated data.

Starting from the𝐴𝑅(1)process simulation (Equation3.8), Figure 3.6 charts their
behavior, along with 95% credible intervals: of great interest is the fact that these

intervals range shifts depending on both lagged and actual values at time 𝑡 and the
different models and approximations used. This is reflected by both the Winkler

scores and coverage; also, the visual analysis shows how almost all of the target

values fall within these intervals.

Table 3.4: Performance indicators for the AR(1) simulation. In particular, both sim-
pler Bayesian networks using either Bayes-by-backprop (Section 3.3) or
MCMC (Section 3.2) methods performance was on par with their more
complex counterparts, while having many fewer parameters and there-
fore requiring much less fitting time (see Table 3.3).

Model Set RMSE MAE Winkler Score Coverage

Naïve test 1.07361 0.84565 5.51448 1.00000

Mean test 1.17975 0.95516 20.40839 0.92000

Simple, VI train 0.55567 0.43581 2.75992 0.96000

Simple, VI test 0.59302 0.46427 2.91426 0.93939

Simple, MCMC train 0.56462 0.44287 2.81924 0.96000

Simple, MCMC test 0.61801 0.48028 3.03202 0.92727

DL, VI train 0.55659 0.43544 2.86081 0.96970

DL, VI test 0.60652 0.47086 2.91418 0.96364

DL,MCMC train 0.56257 0.44110 2.80094 0.95758

DL,MCMC test 0.62241 0.48300 3.11164 0.91515

The resulting forecast performance is summarised in Table 3.4. All performance in-

dicators onboth training and test sets highlight howall versions of theBayesianRe-

current Neural Network performed with good accuracy, generalizing very well to

capture the series dynamics and showing consistency in their credible intervals.

In addition, the deep learning Variational Inference-based network required more

fine-tuning and hence failed the first tests: the resulting output is shown in Fig-

ure 3.7.

45

3 Bayesian Neural Networks

Figure 3.6: AR(1) mean forecasts with 95% credible intervals, with the simple model
output on the first row (subplots 1 and 2) and the deep learning model
output on the second row (subplots 3 and 4). The output on the first
column (subplots 1, 3) derives from a variational approach that in-
volved training the models with Bayes-by-backprop (Section 3.3) for105 epochs before sampling their variational posteriors. The output
on the second column (subplots 2, 4) has been obtained through the
Metropolis-Hasting algorithm, hence it did not require training the
model (Section3.2). The functional architecture details are shown inTa-
ble 3.3, but the only difference column-wise between the models is the
approximation technique. Allmodels show remarkable performance on
this simple simulated dataset.

46

3.5 Simulated examples

Figure 3.7: Comparison between models, one that has been properly trained, and an-
other in which the training process failed, for a simulated 𝐴𝑅(1) pro-
cess. TheVariational Inference framework (Section3.3) requires a stan-
dard learning phase, in which batches of training data are fed to the
network, performing backpropagation in its Bayesian version. Even
when this process fails, the resulting forecast is comparable to the
benchmarks; moreover, the overall uncertainty captured by the inter-
vals longer width shows that themodel signals its lack of generalization
through the distribution of its output.

47

3 Bayesian Neural Networks

Table 3.5: Comparison between learned and unlearned models, 𝐴𝑅(1) simulated
dataset. The VI-based deep learning architecture requires more fine-
tuning, hence the first standard test runs failed to produce performant
dynamic forecasts; however, the results are still comparable with the
benchmark forecasts displayed in Table 3.4.

Model Set RMSE MAE Winkler Score Coverage

Learned train 0.55659 0.43544 2.86081 0.96970

Learned test 0.60652 0.47086 2.91418 0.96364

Not learned train 0.97509 0.78372 4.47801 0.96000

Not learned test 1.10122 0.87663 5.62730 0.91515

Even when the learning process fails, the resulting forecasts are still comparable

with the benchmarks (Table 3.5), showing that even in such a worst-case-scenario

the model still performs acceptably, without critical failures or returning absurd

or over-confident predictions; nevertheless, it can be noted that this failure has an

impact on the posterior ability to correctly estimate the associated uncertainty, as

only 91.5% of observations fall within the computed intervals. Coverage notwith-

standing, this is also the case inwhich the prediction intervals arewider,≈ 3.87.
It can also be noted by comparing all the other panels that dilation of the intervals

corresponds to the points in the time series in which its dynamics reach wider de-

viations from the mean: in particular when a downward spike that almost reaches−3𝜎 before moving steeply upward in just a few time steps occurs in the simula-

tions.

In this second setting, testing the BRNN against a latent factor model as detailed

in Equation 3.9, all models show outstanding performances, regardless of the ar-

chitecture or approximation technique, even if the time series shows a more pro-

nounced cyclical dynamic mixed with a randomwalk.

The simple, single-layered recurrent MCMC-based structure, in particular, while

not being the best performer, shows that aBRNNmean forecast can follow the test

data point quite closely, mimicking spikes, trends, and cycles consistently, even if

they are accompanied by an increase in the overall uncertainty, as shown by the

wider shape of the resulting predictive posterior; this combination suggests that

the number of samples from the posterior is not enough to correctly approximate

the test set distribution.

48

3.5 Simulated examples

Figure 3.8: Test set mean forecasts with 95% credible intervals for the latent factor
model simulated data, with the simplemodel output on the first row (sub-
plots 1 and 2) and the deep learning model output on the second row
(subplots 3 and 4). In this case, both the simple BRNN with VI and the
Deep Learning BRNN with MCMC forecast performance was approxi-
mately similar, following the test series dynamics more closely and hav-
ing narrower intervals.

49

3 Bayesian Neural Networks

Table 3.6: Performance indicators for the latent factors model simulation described by
Equation 3.9. All other models performed consistently well, outclassing
the simpler forecasting approaches. In this second setting, choosing the
best performingmodel is not clear cut.

Model Set RMSE MAE Winkler Score Coverage

Naïve test 0.85925 0.73131 4.07134 1.00000

Mean test 0.91664 0.78840 16.02283 0.99000

Simple, VI train 0.36244 0.29101 1.68654 0.96121

Simple, VI test 0.37517 0.29545 1.87148 0.94545

Simple, MCMC train 0.37598 0.30230 1.85831 0.96970

Simple, MCMC test 0.37570 0.29052 1.89329 0.96364

DL, VI train 0.35715 0.28654 1.69972 0.97697

DL, VI test 0.38145 0.29978 1.86120 0.95758

DL,MCMC train 0.36075 0.28863 1.65353 0.96000

DL,MCMC test 0.37091 0.28858 1.89660 0.93333

The benchmarks were outperformed by all the trained models and, while the

learning process still failed for the VI-based deep learning model (Figure 3.9

and Table 3.7), it is also the simulation test result that has the widest prediction

intervals, which this time include 99% of the out-of-sample data. This reactive

dilation of the intervals to the differences in the inherent uncertainty is more

evident in this simulation than in Figure 3.6.

Table 3.7: Comparison between learned and unlearnedmodels, latent factor simulated
dataset. The VI-based deep learning architecture requires more fine-
tuning, hence the first standard test runs failed to produce performant
dynamic forecasts; however, the results are still comparable with the
benchmark forecasts displayed in Table 3.6.

Model Set RMSE MAE Winkler Score Coverage

Learned train 0.36059 0.29018 1.72909 0.97818

Learned test 0.38448 0.30366 1.93666 0.95152

Not learned train 0.98091 0.76940 4.93985 0.94182

Not learned test 0.84926 0.72472 3.89396 0.99394

Another fundamental aspect of the capabilities of a Bayesian Neural Network, as

detailed in Section 3.1, is its ability to output a full predictive distribution, fromwhich

50

3.5 Simulated examples

Figure 3.9: Comparison between models, one that has been properly trained, and an-
other in which the training process failed, for the simulated latent factor
dataset. The Variational Inference framework (Section 3.3) requires
a standard learning phase, in which batches of training data are fed
to the network, performing backpropagation in its Bayesian version.
Evenwhen this process fails, the resulting forecast is comparable to the
benchmarks; moreover, the overall uncertainty captured by the inter-
vals longer width shows that themodel signals its lack of generalization
through the distribution of its output.

51

3 Bayesian Neural Networks

a mean, median, or whatever quantile forecast desired can be computed through

simple formulas. Hence, we can compare this output with the actual test data by

using descriptive statistics such as themean,median, skewness, and kurtosis.

Table 3.8:Descriptive statistics for the predictive posterior and the actual test distribu-
tion, simulated𝐴𝑅(1) dataset.

set Mean Median Skewness Kurtosis

Test 0.0339625 -0.0383083 -0.1214046 3.130651

VI, simple 0.0281679 0.0615775 -0.2064915 2.911297

VI, DL (learned) 0.0018364 0.0359133 -0.2077651 2.885629

VI, DL (unlearned) -0.0035615 -0.0035613 -0.0003094 3.007421

MCMC, simple 0.0377277 0.0731352 -0.1987595 2.803121

MCMC, DL 0.0176742 0.0593319 -0.2105090 2.747941

Table 3.9:Descriptive statistics for the predictive posterior and the actual test distribu-
tion, simulated latent factor model dataset.

set Mean Median Skewness Kurtosis

Test -0.5674783 -0.5920102 -0.0035522 2.789960

VI, simple -0.5893648 -0.6074777 0.1145625 2.760384

VI, DL (learned) -0.5857342 -0.5942244 0.0612518 2.790477

VI, DL (unlearned) -0.5975992 -0.6049365 0.0436146 2.755918

MCMC, simple -0.5691130 -0.5872220 0.3268309 5.264646

MCMC, DL -0.5830328 -0.5995767 0.1462454 2.920661

Table 3.8 and Table 3.9 show this comparison. While some features of the target

distribution are not being captured exactly, they are still a good approximation, not

far off from the actual values. In particular, for both simulations, the autoregres-

sive process simulation characteristics (left-skewed and leptokurtic) are found in

the approximation of the predictive posterior. The same is not happening for the

simulated latent factor model, in which, while the mean and median forecasts are

more precise and the approximated posterior has a kurtosis in almost all iterations

that differs by the 10−2 order of magnitude, the skewness is not captured prop-
erly.

To conclude this section, the following paragraphs put the two structural variations

of theBRNNand the twodifferent posterior predictive approximations to thehard-

est test, which is forecasting out-of-sample.

52

3.5 Simulated examples

Figure 3.10: Actual and predicted densities comparison,𝐴𝑅(1) dataset.

Figure 3.11: Actual andpredicteddensities comparison, simulated latent factormodel
dataset.

53

3 Bayesian Neural Networks

For these last experiments on simulated data, the output of the trainedBRNNs has

been fed back, retraining the network iteratively for several steps; afterward, the

usual performance indicators have been computed using the test set. As expected,

the performance significantly worsens, but not all models perform worse than the

benchmark.

Figure 3.12: Static forecast, 𝐴𝑅(1) simulation. The quality of the forecast is not
good, as can be foretold by observing the chart, in which all mod-
els fail to pick up relevant patterns, reverting to what is an approxi-
mated mean forecast. Moreover, the credible intervals are not reac-
tive, hence a relevant part of the target data points fall outside them.

Figure 3.12 charts the static forecasts, while Table 3.10 shows the relative perfor-

mance indicators, for the dataset corresponding to the simulated𝐴𝑅(1) process.
In this case, all models perform on par: there is no clear-cutwinner, but the extra ef-

fort and sophistication of the BRNNhave to be taken into account; hence, it seems

that the simplestmean forecastwouldbeabetter choice than the complexnetwork.

In particular, the probabilistic aspect of the forecast, summarized by the Winkler

Score and the coverage statistics, reveals that the network fails to correctly cap-

ture the overall variation and shape of the target distribution, as too many of the

test data points fall outside the 95% credible intervals.

54

3.5 Simulated examples

Table 3.10: Performance indicators for𝐴𝑅(1) simulation. While no clear winner is
lookingat these statistics, given theextra computational effort involved,
the mean method seems to be outperforming the more sophisticated
BRNN.

Model RMSE MAE Winkler Score Coverage

Mean 1.285586 1.0260118 7.106446 0.850

Naïve 1.488923 1.2419381 13.431981 1.000

VI, simple 1.389106 1.1484818 14.907949 0.573

VI, DL 1.295991 1.0411589 8.535286 0.760

MCMC, simple 1.297111 0.9911647 13.506259 0.640

This changes with the simulated latent factor model: the BRNNs, while not

outclassing completely the simpler method as they did in the dynamic forecast

setting, are still outperforming the benchmarks, with the MCMC-approximated

single-layered recurring network as thewinner. Even if the coverage is still not able

to match the nominal value associated with the credible intervals, a 3% difference

is not as problematic as what happened with the𝐴𝑅 simulated process.

Table 3.11: Performance indicators for latent factormodel simulation. In this case, all
networks outperform the benchmarks, with theMCMCbeing the best
performance in each indicator for both point and probabilistic forecast
quality.

Model RMSE MAE Winkler Score Coverage

Mean 0.6009647 0.4636015 4.082119 0.920

Naïve 0.6461243 0.5047261 10.545585 1.000

VI, simple 0.5713207 0.4375569 3.716109 0.853

VI, DL 0.5849795 0.4494713 4.135341 0.907

MCMC, simple 0.4909852 0.3740334 2.804273 0.920

To conclude, it seems that better tools exist to deal with time series that can be

modeled as autoregressive processes: in this case, the BRNN is not able to outper-

form the simplest methods, hence they are not a viable choice in a forecasting sce-

nario.

However,withmorecomplex timeseries that canbemodeledby latent factorsmod-

els, even a simple, single-layered LSTM recurrent network that samples from the

predictive posterior using the MCMC technique for approximation can withstand

55

3 Bayesian Neural Networks

Figure 3.13: Static forecast, latent factor model simulation. In this case, the BRNNs
outperform the benchmarks, with the simple MCMC-based network
taking the crown, having lower errors, Winkler Score, and higher cov-
erage, without it being too computationally expensive to test with a
simple dataset of size 𝑇 = 900. While neither of the other models
captures the kind of patterns that the target series is showing, it ex-
hibits slight variations that approximate the original dynamics, further
reducing the errors of its point forecasts. Moreover, wider credible
intervals allow it to cover most of the original data points.

56

3.5 Simulated examples

and outperform the benchmarks on point-forecasts out-of-sample, capturing the

uncertainty associated with its predictions.

57

4 Real data applications

This sectionexplores the applicationof thepowerful frameworkunveiled in thepre-

vious chapter, testing the Bayesian Recurrent Neural Network in an applied sce-

nario, forecasting dynamically on real-world data.

Section4.1will present thedataset and thevolatility estimator thatwill be targeted

and forecasted, the realized range (Martens and Van Dijk 2007), while Section 4.2

andSection4.3 theBayesianRecurrentNeuralNetwork resultingperformances.

4.1 Presenting the datasets and the realized range

The twoexperiments reported in the following sectionswill performadynamic fore-

cast of volatility ofhigh-frequency trading data in challenging scenarios, sourced from

Bloomberg. Both datasets contain the closing price, high, low, and net change, each

recorded at intervals of one minute. First, Section 4.2 targets the realized range of

the€/$exchangerate, starting from01/12/2023andendingon03/02/2024,while

Section 4.3 will be about forecasting the volatility of the S&P500 index using data

from02/02/2020 to26/03/2020, a time frame inwhichCOVID-19brought havoc

on thefinancialmarkets after a relatively stable run, causing sudden spikes and falls

in the overall volatility compared to the previous periods, as manifested by a steep

descent of the index value followed by a timid bounce back aroundMarch, amonth

in which themaximum volatility value is observed.

In both cases, this thesis will build on Martens and Van Dijk (2007) and use the

scaled realized range to estimate volatility. Volatility is both time-varying and, to a

certain extent, predictable (2007, 181), and the realized rangeworks as anefficient

estimator for this feature of financial time series. Mathematically, it is defined as:

𝑅𝑅Δ𝑡 = 14 log 2 𝐼∑𝑖=1(log𝐻𝑡,𝑖 − log𝐿𝑡,𝑖)2 (4.1)

59

4 Real data applications

where 𝐻𝑡,𝑖 and 𝐿𝑡,𝑖 are the high and low values of the price at time 𝑡. To make
it more robust tomarket microstructure frictions, a typical characteristic of intraday

data causedby thehigh-frequency samplingand thenoise it casts, a bias-correction

procedure develops Equation 4.1 further, consisting of scaling the result by the ra-

tio or the average level of the daily range and the average level of the realized range

of the previous trading days. The scaled realized range𝑅𝑅Δ𝑆,𝑡 can bewritten as:
𝑅𝑅Δ𝑆,𝑡 = (∑𝑞𝑙=1 𝑅𝑅𝑡−𝑙∑𝑞𝑙=1 𝑅𝑅Δ𝑡−𝑙) 𝑅𝑅Δ𝑡 (4.2)

where𝑞 is thenumberof tradingdays used to compute the scaling factor, whichhas
been set to 𝑞 = 5 for all simulations.
Simulation experiments and empirical analysis on S&P500 index futures and

S&P100 constituents reveal the realized range’s superior performance over

another common estimator used as a proxy for volatility, realized variance (Martens

and Van Dijk 2007, 188), even with microstructure noise: while the dataset

used does not contain tick-by-tick data and the aggregating at the frequency on

one minute helps avoiding dirty signals and errors, proper data cleaning and

preparation is still needed to properly ensure that the data fed to the BRNN are

not contaminated by wrongly reported observations.

Following Corsi, Peluso, and Audrino (2015, 389), a filter is applied to remove

wrongly reported observations that may distort the analysis: the filtering process

starts with calculating a robust indicator of daily price variability, utilizing the

sample standard deviation of observed prices within the 25th to 75th percentile

range of the empirical distribution. Following this, all prices falling outside an

interval, defined as twice this robust variabilitymeasure and centered around both

the previous and subsequent price observations are eliminated. Formally, being(𝑌𝑖,1, … , 𝑌𝑖,𝑇) the 𝑇 sorted observed prices, the sample standard deviation

is computed on the subsample interquartile range (𝑌𝑖,⌊0.25𝑇 ⌋, … , 𝑌𝑖,⌊0.75𝑇 ⌋),
where ⌊⋅⌋ is the_floor_ function. This standard deviation 𝑑 is the filter’s threshold:

if |𝑌𝑖,𝑡 − 𝑌𝑖,𝑡−1| > 2𝑑 and |𝑌𝑖,𝑡 − 𝑌𝑖,𝑡+1| > 2𝑑, then the sample is removed
from the series and substituted with the boundary value.

The training set will consist in both experiments of most of the observations avail-

able, whichwill forecast a specified number of days in advance: givenℎ the number

of trading days for which the minute-to-minute forecast will be provided, ℎ = 3
for the S&P500, while ℎ = 5 for the FOREX trading data. For these tasks, all

60

4.2 €/$ exchange rate

the insights from Section 3.5 suggest that the simplest architecture will offer a de-

sirable performance, considering the trade-off with computational resources: all

things considered, the simple, single-layered LSMT-based recurrent architecture

is the best overall choice, taking into account that adding layers and thus complicat-

ing the network only slightly increases the performance for both probabilistic and

point forecasts.

The sampling techniques will also have a huge impact on the training and testing

process, adding to the computational cost of training in this intensive setting: each

day consists of either 390 samples for the S&P500, corresponding to 6 and a half

hours of trading, or 1440 observations for the currency rate; hence, a 5 days fore-

cast in this second setting consists of 7200minute-by-minutepredictions. Another

considerationmust involve thenumberofposterior samples required: the lownum-

ber of samples needed to obtain a stable distribution will also speed up the calcula-

tions of quantiles and other indicators. Variational inference seems to be the best

approximation technique for this scenario since104 samples aremore thanenough
to obtain sufficient precision. Markov ChainMonte Carlo is not viable because, as

foretold in Section 3.2, ensuring convergence is computationally intensive and ex-

pensive,without taking intoaccount the timespent inevaluating therequiredstatis-

tics from the sampled posterior. Nevertheless, Section 4.3 will present anMCMC-

based forecast: beingopened fora limitednumberofdays fora totalof390minutes

each day, forecasting dynamically 3 days in advance is feasible within reasonable

computational costs.

To conclude this introduction to the techniques and approaches used and before

presenting the datasets and the experiment results, one last issue needs to be

addressed. Whenever missing observations present themselves, a solution is

required, since ANNs are not capable of handling them: if placeholders such

as NA are fed through the loss function, they will hinder the backpropagation

and learning process, resulting in a stream of NA forecasts. Imputation has been

chosen as the strategy to fill in the gaps caused by market closure, holidays, and

other events that disrupt the continuity of data by repeating the last available

observation. In the case of the S&P500 dataset, a dummy variable representing

days in which the market was closed has been engineered to filter out the missing

observations and obtain a single stream of values.

61

4 Real data applications

Figure 4.1: Scaled realized range, closing price, and net change for €/$ exchange rate.

4.2 €/$ exchange rate

This time series presents challenging dynamics, as represented in Figure 4.1, ex-

hibiting a random walk of closing prices that pairs with a lack of patterns in both

the scaled realized range and net change, suggesting an almost white-noise-like se-

quence of observations. Table 4.1 contains the relative summary statistics for the

whole dataset. If we focus on the test set and isolate them in a single facet of charts

representing these 5 trading days (Figure 4.2), some slight patterns are neverthe-

less discernible, such as those linked to the opening-closing hours of the market at

the different time zones or the different days of the week.

Table 4.1:Descriptive statistics for €/$ exchange rate. The observed distribution is
far from normal, with high asymmetry and kurtosis.

Mean Median Sd Skewness Kurtosis Min Max

0.0001251 9.2e-05 0.0001706 8.647287 182.1783 0 0.0054104

If we compare point-forecast accuracy, the model is not beating one of the two

benchmarks, a simple naïve forecast, which is usually the case in this kind of

62

4.2 €/$ exchange rate

Figure 4.2: 5 days sample scaled realized range for €/$ exchange rate.

scenario; there are however some key considerations to be made regarding the

probabilistic forecasts: first of all, the coverage statistic and the Winkler Score

highlight the strengths of theBRNN. In particular, notwithstanding the challenging

task, the coverage is almost perfectly aligned with the chosen𝛼 of 5% and, looking

at Figure 4.3, the point forecast pattern mimics the dynamics of the original series

and, in particular, can correctly recognize the volatility spikes.

Table 4.2: Performance indicators for €/$ exchange rate 5-days ahead forecast.
While the point forecasts of the BRNN are worse than those of a naïve
model, the probabilistic indicators show a better performance; in partic-
ular, the coverage is almost exactly on point with the credible intervals
5% nominal level, meaning that the corresponding quantiles can capture
the overall variability of the target distribution.

Model RMSE MAE Winkler Score Coverage

Naïve 0.9999306 0.5879688 5.895383 1.00

Mean 1.1723362 0.6587535 239.469060 0.97

Simple VI 1.0147689 0.6363179 5.121619 0.95

By examining the target distribution and the predictive posterior (Figure 4.4), it is

63

4 Real data applications

Figure 4.3:Dynamic forecast, €/$ exchange rate, 29-01-2024 to 03-02-2024. The
main highlight is that the BRNN can offer a remarkable probabilistic
forecast, marching the spikes and declines in volatility,

64

4.3 S&P 500 index

clear how hard of a task was predicting such an irregular, multimodal, highly asym-

metricdensity; thisexplainshowsimplebenchmarkmethodscanoutperformhighly

sophisticated neural networks. In such an unpredictable environment, simply set-

ting all forecasts tobe the valueof the last observation canhave a remarkable effec-

tiveness. In further applications, fine-tuning the stochasticmodel could potentially

enhance the overall performance; however, even standard choices are capable of

returning a decent result.

Figure 4.4: Actual and predicted densities comparison, €/$ exchange rate.

4.3 S&P 500 index

The challenge with this setting is trying to forecast a trended index after a systemic

shock, such as COVID-19, using only past values of that index. As it is well known

(Figure 4.5), the month of February 2020 was characterized by a steep descent, a

fall in the value of the index caused by the onset of the pandemic. 3 days of March

have been chosen as the test set, right at the moment in which a bounce back was

happening: this setting is challenging because it needs the predictive model to be

able to capture sudden shifts, not only trends and seasonality.

65

4 Real data applications

Figure 4.5: Scaled realized range, closing price, and net change for the S&P 500 index.
While the range of the y-axis variable makes it hard to notice all data
points, this width is a clear signal of the overall disruption of the mar-
kets,with thenetchange (subfigure3) indicatingmanyverypronounced
downwardmovements.

66

4.3 S&P 500 index

Table 4.3:Descriptive statistics for S&P500 index . The observed distribution is
asymmetric and leptocurtic.

Mean Median Sd Skewness Kurtosis

0.0014049 0.0013423 0.0011464 0.9258913 4.214088

In this case, a shorter training set andpredictionwindowallowedus to compare the

performance of the two different posterior approximations framework; as it has

shown good results in Section 3.5, it is interesting to test whether it can be repli-

cated in a more challenging scenario and if the result outweigh the extra computa-

tional cost involved.

Table 4.4: Performance indicators for S&P500 index 3-days ahead forecast. The VI-
based BRNN takes the crown as the best performer for all indicators,
showing in particular a coverage of almost 100%. TheMCMC is not able
to beat the benchmarks, exceptionmade for theMAE, and is particularly
lacking in the probabilistic aspects of its outputs.

Model RMSE MAE Winkler Score Coverage

Naïve 1.2937277 1.2636941 3.919955 1.000

Mean 0.8055183 0.8054364 35.016675 1.000

Simple VI 0.3637456 0.3602665 3.592977 1.000

SimpleMCMC 1.0153938 0.6756231 8.594178 0.751

The Variational Inference-based BRNN decisively outperforms the benchmarks,

showing a remarkable predictive power in a highly volatile setting; it is in particular

notable the coverage of≈ 100%, which means that after taking into account the

numerical precision of this estimate almost all of the target data points falls inside

the credible intervals. This can be attributed to the fact that the model correctly

forecasted the overall increase in the market volatility and consequently the

predicted posterior has wide tails, able to take into account the overall variation

in the target distribution, even if one of the days in the dataset contained the

maximum value for the scaled realized range.

While the MCMC-based model MAE is still the second-best, its RMSE is undercut

by amean forecast, and both probabilistic indicators show that the performance of

the model is sub-par. The main reason can be immediately spotted by comparing

the two predictive posteriors’ densities with the actual distribution of the target

variable; Figure 4.7 highlights that the latter is a highly irregular distribution, far

67

4 Real data applications

Figure 4.6: VI-based model dynamic forecast S&P 500 index, 24/03/2024-
26/03/2024. In this case, the model outperforms the benchmarks; a
closer examinationof the charts showshow the slight shifts of themean
forecast can follow the dynamic of the target time series. Moreover,
the credible intervals are wide enough to accommodate almost all data
points, in such a highly volatile scenario.

68

4.3 S&P 500 index

Figure 4.7: Actual and predicted densities for the S&P500 scaled realized range fore-
casts. The VI-based predicted posterior shows why it is the best per-
former under both point and probabilistic forecasts benchmarks: the
mean is forecasted almost exactly and the fat tails can express the over-
all variability of the target, even though it completely lacks anyhint of its
tri-modality. TheMCMC-based is bi-modal but fails to capture theover-
all scale and shape of its target, hence underperforming the variational
approximation.

69

4 Real data applications

from the Gaussian proposed as a variational approximation. However, such an ap-

proximation does a better job by being centered closer to the target and by having

fatter tails that can contain the extremes; in contrast, while theMCMC-based pos-

terior is definitely far from a normal distribution and is also multi-modal, it is not

centered correctly and fails to capture the overall variability. Being that such an

imprecise approximation still required 1440 × 106 samples, it is a clear indicator
of how cumbersome this approach can become and how it does not guarantee a

sufficiently precise result.

Nevertheless, the MCMC-based BRNN shows some very interesting aspects and

a powerful, yet unexpressed, potential: while being held back by the computational

cost of the sampling process, it can output irregular and ill-behaved distributions

that would be otherwise complex to model apriori, but are a better match for real

data; it is important to remember that all the structural and stochastic features of

this models are the same except for the approximation technique, and at the same

time the output distribution is completely different from the almost-Gaussian den-

sity that the Variational Inference basedmodels all predict regularly.

Figure4.8 shows theconsequencesof thisbehavior: its forecasts aremore reactive

even if imprecise, following the dynamics of the objective more closely. Further re-

search intomore efficient and cost-effectiveMCMCsampling could unlock the full

potential of this approach, which is very powerful and versatile evenwithminimum

fine-tuning and no training.

70

4.3 S&P 500 index

Figure 4.8:MCMC-based model dynamic forecast S&P 500 index, 24/03/2024-
26/03/2024. While imprecise, the model displays a reactive behavior
to shifts and patterns in the target, mimicking patterns and especially
trends. The 95% credible intervals fail to capture the overall variabil-
ity: the probabilistic forecast is not on point, but the lower MAE than
the benchmarks points out that the point accuracy, while inferior to the
VI-based forecasts, is still more than acceptable.

71

5 Conclusions

Bayesian inference is an estabilished method that, as shown by its results on

both simulated (Section 3.5) and real (Section 4) scenarios, effectively allows

to enhance the capabilites of the Artificial Neural Network. The review of the

literature on the subject unveiled awide corpus of research andmethods, unveiling

well-known frameworks such as Variational Inference and theMetropolis-Hasting

algorithm that are readily available and have been tested to both simulated and

real datasets.

Critical applications require tools that are able to generalize well, without break-

ing or failing due to overconfidence or lack of generalization. Such failures might

happen for various reasons, such as the lack of data, spikes in the overall volatility,

or even for mishaps in the algorithms training process; in the worst case, they are

inherent to the tool used, which weighs negatively on its usefulness and hinder its

adoption.

These methods have been paired with a specialised architecture, such as the Long

Short-TermMemory perceptron on which all the simulation of experiments of this

thesis revolved, to unlock the potential of returning probabilistic forecasts, based

on a full ensemble of possible parametrizations of complex, multi-parametric archi-

tectures that could natively only output point forecasts of the mean or given quan-

tiles.

While not always the best performer, the Bayesian RecurrentNeural Network con-

sistently beat the benchmarks, with the main highlights being its ability to return

sensible and reasonable probabilistic forecast, its robustness to overfitting, and its

adaptability to a wide range of challenging scenario with minimal fine tuning.

In such scenarios, having a tool able to forecast even without the help of special-

ized domain knowledge and models such as the perceptron is indeed full of poten-

tial. Using Bayes theorem to base these parametrizations on the available evidence,

directly addresses one of the fundamental sources of epistemic uncertainty that the

powerful yet over-confident Neural Network inherently has.

73

5 Conclusions

This thesis showedhowtheBayesianNeuralNetworkcanfill this role,matching the

foundational specialized functionwith anoverarching statisticalmodel, andhow its

ability to perform inferencemakes it a viable choice in such scenarios.

While still an imperfect tool, further research is testing even more powerful archi-

tectures and models; the fifth Makridakis competition (Makridakis, Spiliotis, and

Assimakopoulos (2022)) has been the first to eminently feature machine learning

models, which have been consistently among the best performers.

Further research on the approximation method, aimed at fine tuning their perfor-

mance and improving the efficiency of the computations, would be able to over-

come the biggest limitation of the most expensive methods, such as the Markov

ChainMonteCarlo, which showedgreat ability tomodel complex andhighly irregu-

lar target distributions: a quicker convergence or a reduction in the time that both

the sampling process and the following computations require has a huge potential

for applications in time series forecasting, in particular in those areas or situations

in which a general-purpose functional model might be preferred to specialized, do-

main specific algorithms.

74

Abbreviations list

• ACF: AutoCorrelation Function.

• ANN: Artificial Neural Network.

• AR: Auto Regressive model.

• BBB: Bayes-By-Backprop.

• BDL: Bayesian Deep Learning.

• BNN: Bayesian Neural Network.

• BBBTT: Bayes-By-Backprop Through Time.

• BPTT: Back Propagation Through Time.

• BRNN: Bayesian Recurrent Neural Network.

• CEC: Costant Error Carousel.

• CNN: Convolutional Neural Network.

• DBN: Deep Belief Network.

• DGP: Data Generating Process.

• DMLP: DeepMulti-Layer Perceptron.

• ELBO: Evidence Lower BOund.

• GP: Gaussian Process.

• KL-Divergence: Kullback-Leibler Divergence.

• LSTM: Long-Short TermMemory.

• MAP:MaximumA Posteriori.

• MCMC:Markov-ChainMonte Carlo.

• MLE:Maximum Likelihood Estimation.

• MLP:Multi-Layer Perceptron

• NN: Neural Network.

• PACF: Partial Autocorrelation Function.

• PGM: Probabilistic Graphical Model.

• RBM: Restricted BoltzmannMachine.

• RNN: Recursive Neural Network.

• VI: Variational Inference.

75

List of Figures

2.1 An abstract representation of a single-layered Neural Network architec-

ture, with 𝐾 = 5 neurons and 𝑝 = 4 input variables. The input

layer contains asmany neurons as the number of independent vari-

ables fed into the activation functions𝐴𝑘, which compose the sec-
ond hidden layer. The last output layermight also containmany neu-

rons: as a matter of fact, the multilayered perceptron is among the

fewmodels that natively can output a multivariate response. 6

2.2 Feedforward activation for a single neuron. This figure unpacks the

notationofEquation2.1 for a single activation. Theweights𝑤𝑙𝑗 and
biases 𝛽(0)𝑗 are applied to each connection and fed to a nonlinear

function 𝑔(⋅). Some connections matter more than others: hence,
the weights can be conceptualized as a signal of the relative impor-

tance of a particular connection, while the biases make the activa-

tion meaningful only if it reaches a certain threshold. 8

2.3 Activation functions examples. For the original perceptron, Rosen-

blatt (1957) chose the sign function; a choice discarded by later

development because of its derivative being equal to 0 (Goan and

Fookes 2020, p 6). When using the logistic function (sigmoid) in a

single-layerednetwork as Figure2.1, Equation2.1 is equivalent to a

logistic regression. This function has been a common choice, along

with the Hyperbolic Tangent, as the activation 𝑔(⋅) in the earliest

investigations of neural network training, a choice justified by its

grounding in probability theory and statistical learning; however, it

was discarded because of the so-called vanishing gradient problem,

caused by having gradients in the range [−1, 1], which caused

inefficient and slow learning. They have been replaced by the

REctified Linear Unit (RELU) and its leaky variation in gradient-based

learning such as backpropagation. 9

77

List of Figures

2.4 FromGoan and Fookes (2020, 4), a comparison of a neural network

to traditional probabilistic methods for a regression task, with no

training data in the purple region. On the left: Regression output us-

ing a neural network with 2 hidden layers; on the right: Regression

using aGaussian Process framework, with a grey area representing±2𝜎 from the expected value. 12

2.5 Recurrent Neural Network. On the left-hand side, is the so-called

“folded” representation, and on the right-hand side, is the “unfolded”

structure of the recurrent processing happening inside this spe-

cialized architecture. The unfolded representation should not

be confused with a sequence of layers, as in Figure 2.2; they are

instead a representation of the same network but at different steps in

time. The input is a sequence of vectors having a single component{𝑋𝑡}𝑇𝑡=1 and the target is a single response. The same collections
of weights are used as each element is processed and the output

layer produces a sequence of predictions 𝑌 from the current

activation𝐴𝑇 , but typically only the last of these is of relevance. . . 17

2.6 Diagram of a Long-Short Term Memory unit Costant Error Carousel,

which replaces theordinary recurrentnode illustrated inFigure2.5,

with a detailed inside information flow at time 𝑡. A hidden stateℎ𝑡−1, along with a cell state 𝑐𝑡−1, as computed one lag before, are
combined to 𝑥𝑡 and fed in parallel to different activation functions,
such as the sigmoid𝜎 and theHyperbolic Tangent𝑇 𝑎𝑛ℎ, to update
the cell and hidden states at 𝑡, to be used in the next step of the
recurrent model. Each flow is labelled accordingly to equations

from Equation 2.7 to Equation 2.11. 20

2.7 Topic-models heatmap from Sezer, Gudelek, and Ozbayoglu (2020,

21). On the horizontal axis is a list of topics related to financial time

series forecasting; on the y-axis is a list ofmodels; the cell color gra-

dient details the number of applications of a given model for a spe-

cific topic. Recurrent Neural Networks (RNN) include the LSTM

architecture and are by far the most used. DMLP stands for Deep

Multi-Layered Perceptron, which is another term for the models de-

scribed in Section 2.1 and Section 2.2. 23

78

List of Figures

3.1 Comparison between regular and Bayesian Neural Networks. While

the overall architecture stays the same and is similar to the ANN

represented in Figure 2.1, the main difference is in the way the pa-

rameters are interpreted. While in the regular setting the observed

data are considered as generated from a random process and

the parameters have a true value to be discovered, the Bayesian

approach treats these latent parameters as random variables of

which we want to learn a distribution, conditional on the what we

can observe in the training data. 26

3.2 AR(1) simulation plots: on the top, a simple line chart representing

the resulting time series, with different colors to represent the

train-test split of the data points; on the bottom, the AutoCorre-

lation Function (ACF) plot on the left-hand side and the Partial

AutoCorrelation Function (PACF) plot on the right-hand side, with

blue dashed lines corresponding to confidence interval for the

white noise hypothesis. 38

3.3 Latent factor simulation, as described by Equation 3.9: on the top, a

simple line chart representing the resulting time series, with differ-

ent colors to represent the train-test split of the data points; on the

bottom, the AutoCorrelation Function (ACF) plot on the left-hand

side and the Partial AutoCorrelation Function (PACF) plot on the

right-hand side,withbluedashed lines corresponding to confidence

interval for the white noise hypothesis. 39

3.4 Evolution of the approximated posterior with an increasing number of

samples with a Variational Inference-based model. In each chart,

grey lines represent all forecasts, while the red line is the actual ob-

jective distribution that we wish to forecast. Dashed lines, color-

coded in the sameway, represent themedian point of both distribu-

tions. The same BRNN has been trained and the resulting predic-

tive posterior distribution has been sampled to obtain a snapshot

of the effect of increasing the number of samples. It can be seen

that a quick convergence to a good approximation is reachedwithin

a rangeof103 to2.5×103 samples. Increasing thenumber of sam-
ples is not improving dramatically the overall shape of the distribu-

tion; however, the forecasted median converges almost exactly at104 samples. 41

79

List of Figures

3.5 Evolution of the approximated posterior with an increasing number

of samples with a Markov Chain Monte Carlo-based model: as

expected from a theoretical point of view (Section 3.2), increasing

the number of samples dramatically increases the accuracy of the

prediction. In each chart, grey lines represent all samples, while

the red line is the actual objective distribution that we wish to

forecast. Dashed lines, color-coded in the same way, represent

the median point of both distributions. A good approximation is

reached only for 105 samples, which increases significantly the

overall computation time, and the approximated distributions and

their quantiles demonstrate a wide range of shapes and scales. . . . 42

3.6 AR(1) mean forecasts with 95% credible intervals, with the simple

model output on the first row (subplots 1 and2) and the deep learn-

ing model output on the second row (subplots 3 and 4). The output

on the first column (subplots 1, 3) derives from a variational ap-

proach that involved training the models with Bayes-by-backprop

(Section 3.3) for 105 epochs before sampling their variational

posteriors. The output on the second column (subplots 2, 4) has

been obtained through the Metropolis-Hasting algorithm, hence

it did not require training the model (Section 3.2). The functional

architecture details are shown in Table 3.3, but the only difference

column-wise between the models is the approximation technique.

All models show remarkable performance on this simple simulated

dataset. 46

3.7 Comparison between models, one that has been properly trained, and

another in which the training process failed, for a simulated 𝐴𝑅(1)
process. The Variational Inference framework (Section 3.3) re-

quires a standard learning phase, in which batches of training data

are fed to the network, performing backpropagation in its Bayesian

version. Even when this process fails, the resulting forecast is

comparable to the benchmarks; moreover, the overall uncertainty

captured by the intervals longerwidth shows that themodel signals

its lack of generalization through the distribution of its output. . . . 47

80

List of Figures

3.8 Test set mean forecasts with 95% credible intervals for the latent factor

model simulated data, with the simple model output on the first row

(subplots 1 and 2) and the deep learning model output on the sec-

ond row (subplots 3 and 4). In this case, both the simple BRNNwith

VIand theDeepLearningBRNNwithMCMCforecastperformance

was approximately similar, following the test series dynamics more

closely and having narrower intervals. 49

3.9 Comparison between models, one that has been properly trained, and

another in which the training process failed, for the simulated latent

factor dataset. The Variational Inference framework (Section 3.3)

requiresa standard learningphase, inwhichbatchesof trainingdata

are fed to the network, performing backpropagation in its Bayesian

version. Even when this process fails, the resulting forecast is com-

parable to the benchmarks; moreover, the overall uncertainty cap-

tured by the intervals longer width shows that themodel signals its

lack of generalization through the distribution of its output. 51

3.10 Actual and predicted densities comparison,𝐴𝑅(1) dataset. 53

3.11 Actual and predicted densities comparison, simulated latent factor

model dataset. 53

3.12 Static forecast,𝐴𝑅(1) simulation. The quality of the forecast is not
good, as can be foretold by observing the chart, in which all mod-

els fail to pick up relevant patterns, reverting to what is an approx-

imatedmean forecast. Moreover, the credible intervals are not re-

active, hence a relevant part of the target data points fall outside

them. 54

3.13 Static forecast, latent factor model simulation. In this case, the

BRNNs outperform the benchmarks, with the simple MCMC-

based network taking the crown, having lower errors, Winkler

Score, and higher coverage, without it being too computationally

expensive to test with a simple dataset of size 𝑇 = 900. While

neither of the other models captures the kind of patterns that the

target series is showing, it exhibits slight variations that approxi-

mate the original dynamics, further reducing the errors of its point

forecasts. Moreover, wider credible intervals allow it to covermost

of the original data points. 56

4.1 Scaled realized range, closing price, and net change for €/$ exchange rate. 62

4.2 5 days sample scaled realized range for €/$ exchange rate. 63

81

List of Figures

4.3 Dynamic forecast, €/$ exchange rate, 29-01-2024 to 03-02-2024.

The main highlight is that the BRNN can offer a remarkable

probabilistic forecast, marching the spikes and declines in volatility, 64

4.4 Actual and predicted densities comparison, €/$ exchange rate. . . . 65

4.5 Scaled realized range, closing price, and net change for the S&P 500 in-

dex. While the range of the y-axis variable makes it hard to notice

all data points, this width is a clear signal of the overall disruption of

themarkets, with the net change (subfigure 3) indicatingmany very

pronounced downwardmovements. 66

4.6 VI-based model dynamic forecast S&P 500 index, 24/03/2024-

26/03/2024. In this case, the model outperforms the benchmarks;

a closer examination of the charts shows how the slight shifts of

the mean forecast can follow the dynamic of the target time series.

Moreover, the credible intervals are wide enough to accommodate

almost all data points, in such a highly volatile scenario. 68

4.7 Actual and predicted densities for the S&P 500 scaled realized

range forecasts. The VI-based predicted posterior shows why it

is the best performer under both point and probabilistic forecasts

benchmarks: the mean is forecasted almost exactly and the fat

tails can express the overall variability of the target, even though

it completely lacks any hint of its tri-modality. The MCMC-based

is bi-modal but fails to capture the overall scale and shape of its

target, hence underperforming the variational approximation. . . . 69

4.8 MCMC-based model dynamic forecast S&P 500 index, 24/03/2024-

26/03/2024. While imprecise, themodel displays a reactive behav-

ior to shifts andpatterns in the target,mimickingpatterns andespe-

cially trends. The 95% credible intervals fail to capture the overall

variability: the probabilistic forecast is not on point, but the lower

MAE than the benchmarks points out that the point accuracy, while

inferior to the VI-based forecasts, is still more than acceptable. . . . 71

82

List of Tables

3.1 List of the more recent Bayesian Neural Networks specialized in

time series forecasting. 35

3.2 Performance indicators for different deep learning architectures of

a Bayesian Recurrent Neural Network. The number of activations

indicates the number of LSTM (Section 2.6) units that compose

the network’s topology. The increasing number of parameters

has no significant effect on the network performance on the

cross-validation set. 43

3.3 Structureof the twomodelsused to forecast the simulateddatasets

of this section. The notation of the structure represents the type of

unit used in the layer, such as LSTM, along with the count of inputs
and outputs as (number of inputs, number of outputs). . 44

3.4 Performance indicators for the AR(1) simulation. In particular, both

simpler Bayesian networks using either Bayes-by-backprop (Sec-

tion 3.3) or MCMC (Section 3.2) methods performance was on par

with their more complex counterparts, while having many fewer

parameters and therefore requiring much less fitting time (see

Table 3.3). 45

3.5 Comparison between learned and unlearned models, 𝐴𝑅(1) simu-

lated dataset. The VI-based deep learning architecture requires

more fine-tuning, hence the first standard test runs failed to pro-

duce performant dynamic forecasts; however, the results are still

comparable with the benchmark forecasts displayed in Table 3.4. . . 48

3.6 Performance indicators for the latent factors model simulation de-

scribed by Equation 3.9. All other models performed consistently

well, outclassing the simpler forecasting approaches. In this second

setting, choosing the best performingmodel is not clear cut. 50

83

List of Tables

3.7 Comparison between learned and unlearnedmodels, latent factor sim-

ulated dataset. The VI-based deep learning architecture requires

more fine-tuning, hence the first standard test runs failed to pro-

duce performant dynamic forecasts; however, the results are still

comparable with the benchmark forecasts displayed in Table 3.6. . . 50

3.8 Descriptive statistics for the predictive posterior and the actual test dis-

tribution, simulated𝐴𝑅(1) dataset. 52

3.9 Descriptive statistics for the predictive posterior and the actual test dis-

tribution, simulated latent factor model dataset. 52

3.10 Performance indicators for𝐴𝑅(1) simulation. Whilenoclearwinner

is looking at these statistics, given the extra computational effort in-

volved, the mean method seems to be outperforming the more so-

phisticated BRNN. 55

3.11 Performance indicators for latent factor model simulation. In this

case, all networks outperform the benchmarks, with the MCMC

being the best performance in each indicator for both point and

probabilistic forecast quality. 55

4.1 Descriptive statistics for €/$ exchange rate. The observed distribu-

tion is far from normal, with high asymmetry and kurtosis. 62

4.2 Performance indicators for €/$ exchange rate 5-days ahead forecast.

While the point forecasts of the BRNN are worse than those

of a naïve model, the probabilistic indicators show a better per-

formance; in particular, the coverage is almost exactly on point

with the credible intervals 5% nominal level, meaning that the

corresponding quantiles can capture the overall variability of the

target distribution. 63

4.3 Descriptive statistics for S&P500 index . The observeddistribution is

asymmetric and leptocurtic. 67

4.4 Performance indicators forS&P500 index3-daysahead forecast. The

VI-basedBRNNtakes thecrownas thebestperformer forall indica-

tors, showing in particular a coverage of almost 100%. TheMCMC

is not able to beat the benchmarks, exception made for the MAE,

and is particularly lacking in the probabilistic aspects of its outputs. 67

84

Bibliography

Ahmad, Ahmad S,MohammadYHassan,MdPauzi Abdullah, HasimahARahman, F

Hussin, Hayati Abdullah, and Rahman Saidur. 2014. “A Review on Applications

of ANN and SVM for Building Electrical Energy Consumption Forecasting.” Re-

newable and Sustainable Energy Reviews 33: 102–9.

Beal, Matthew James. 2003. Variational Algorithms for Approximate Bayesian Infer-

ence. University of London, University College London (United Kingdom).

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. “Julia: A

Fresh Approach to Numerical Computing.” SIAM Review 59 (1): 65–98. https:

//doi.org/10.1137/141000671.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, andDaanWierstra. 2015.

“WeightUncertainty inNeuralNetwork.” In International Conference onMachine

Learning, 1613–22. PMLR.

Charnock, Tom, Laurence Perreault-Levasseur, and François Lanusse. 2020.

“Bayesian Neural Networks.” arXiv Preprint arXiv:2006.01490.

Chen, Luyang, Markus Pelger, and Jason Zhu. 2024. “Deep Learning in Asset Pric-

ing.” Management Science 70 (2): 714–50.

Chib, Siddhartha, and Edward Greenberg. 1995. “Understanding the Metropolis-

Hastings Algorithm.” The American Statistician 49 (4): 327–35.

Corsi, Fulvio, Stefano Peluso, and Francesco Audrino. 2015. “Missing in Asyn-

chronicity: A Kalman-Em Approach for Multivariate Realized Covariance

Estimation.” Journal of Applied Econometrics 30 (3): 377–97.

Deb,Chirag, FanZhang, JunjingYang, SiewEangLee, andKwokWeiShah. 2017. “A

Review on Time Series Forecasting Techniques for Building Energy Consump-

tion.” Renewable and Sustainable Energy Reviews 74: 902–24.

Deng, Li. 2012. “The Mnist Database of Handwritten Digit Images for Machine

Learning Research.” IEEE Signal Processing Magazine 29 (6): 141–42.

Fortunato, Meire, Charles Blundell, and Oriol Vinyals. 2017. “Bayesian Recurrent

Neural Networks.” arXiv Preprint arXiv:1704.02798.

Gasthaus, Jan, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram,

David Salinas, Valentin Flunkert, and Tim Januschowski. 2019. “Probabilistic

85

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

List of Tables

ForecastingwithSplineQuantileFunctionRNNs.” InThe22nd InternationalCon-

ference on Artificial Intelligence and Statistics, 1901–10. PMLR.

Goan, Ethan, and Clinton Fookes. 2020. “Bayesian Neural Networks: An Introduc-

tion andSurvey.” Case Studies inAppliedBayesianData Science: CIRMJean-Morlet

Chair, Fall 2018, 45–87.

Graves, Alex. 2011. “Practical Variational Inference for Neural Networks.”

Advances in Neural Information Processing Systems 24.

Han, Zhongyang, JunZhao,Henry Leung, King FaiMa, andWeiWang. 2021. “ARe-

view of Deep LearningModels for Time Series Prediction.” IEEE Sensors Journal

21 (6): 7833–48.

Hinton, Geoffrey E, and Drew Van Camp. 1993. “Keeping the Neural Networks

Simple byMinimizing the Description Length of theWeights.” In Proceedings of

the Sixth Annual Conference on Computational Learning Theory, 5–13.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.”

Neural Computation 9 (8): 1735–80.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer Feed-

forward Networks Are Universal Approximators.” Neural Networks 2 (5): 359–

66.

Hrasko, Rafael, AndréGCPacheco, andRenatoAKrohling. 2015. “TimeSeriesPre-

diction Using Restricted Boltzmann Machines and Backpropagation.” Procedia

Computer Science 55: 990–99.

Hubel, DavidH, and TorstenNWiesel. 1959. “Receptive Fields of SingleNeurones

in the Cat’s Striate Cortex.” The Journal of Physiology 148 (3): 574.

Jospin, Laurent Valentin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-

hammedBennamoun. 2022. “Hands-onBayesianNeuralNetworks—aTutorial

for Deep Learning Users.” IEEE Computational Intelligence Magazine 17 (2):

29–48.

Kiermayer, Mark, and ChristianWeiß. 2021. “Grouping of Contracts in Insurance

Using Neural Networks.” Scandinavian Actuarial Journal 2021 (4): 295–322.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: A Method for Stochastic Opti-

mization.” arXiv Preprint arXiv:1412.6980.

LeCun, Yann, Yoshua Bengio, et al. 1995. “Convolutional Networks for Images,

Speech, and Time Series.” The Handbook of Brain Theory and Neural Networks

3361 (10): 1995.

Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2022. “M5

Accuracy Competition: Results, Findings, and Conclusions.” International Jour-

nal of Forecasting 38 (4): 1346–64.

Martens, Martin, and Dick Van Dijk. 2007. “Measuring Volatility with the Realized

86

List of Tables

Range.” Journal of Econometrics 138 (1): 181–207.

McCulloch, Warren S, and Walter Pitts. 1943. “A Logical Calculus of the Ideas

Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics 5: 115–

33.

MINSKY,ML. 1969. “Perceptrons.”MIT Press.

Piccinini, Gualtiero. 2004. “The First Computational Theory of Mind and Brain:

A Close Look at Mcculloch and Pitts’s ‘Logical Calculus of Ideas Immanent in

Nervous Activity’.” Synthese 141: 175–215.

Posit team. 2024. RStudio: Integrated Development Environment for r. Boston, MA:

Posit Software, PBC. http://www.posit.co/.

Qiu, Xueheng, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Ama-

ratunga. 2014. “Ensemble Deep Learning for Regression and Time Series

Forecasting.” In 2014 IEEE Symposium on Computational Intelligence in Ensemble

Learning (CIEL), 1–6. IEEE.

R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vi-

enna, Austria: R Foundation for Statistical Computing. https://www.R-project.

org/.

Rangapuram, Syama Sundar, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,

Yuyang Wang, and Tim Januschowski. 2018. “Deep State Space Models for

Time Series Forecasting.” Advances in Neural Information Processing Systems

31.

Rosenblatt, F. 1957. “The Perceptron - a Perceiving and Recognizing Automaton.”

85-460-1. Ithaca, New York: Cornell Aeronautical Laboratory.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. 1986. “Learning

Representations by Back-Propagating Errors.” Nature 323 (6088): 533–36.

Salakhutdinov, Ruslan, AndriyMnih, andGeoffreyHinton. 2007. “RestrictedBoltz-

mann Machines for Collaborative Filtering.” In Proceedings of the 24th Interna-

tional Conference onMachine Learning, 791–98.

Salinas, David, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.

“DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks.”

International Journal of Forecasting 36 (3): 1181–91.

Sezer, Omer Berat, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. 2020.

“Financial TimeSeriesForecastingwithDeepLearning: ASystematic Literature

Review: 2005–2019.” Applied Soft Computing 90: 106181.

Shannon, Claude Elwood. 1948. “AMathematical Theory of Communication.” The

Bell System Technical Journal 27 (3): 379–423.

Spiegelhalter, David. 2019. The Art of Statistics: Learning fromData. Penguin UK.

Tantau, Till. 2013. The TikZ and PGF Packages: Manual for Version 3.0.0. http://

87

http://www.posit.co/
https://www.R-project.org/
https://www.R-project.org/
http://sourceforge.net/projects/pgf/
http://sourceforge.net/projects/pgf/

List of Tables

sourceforge.net/projects/pgf/.

Teräsvirta, Timo, Dick Van Dijk, and Marcelo C Medeiros. 2005. “Linear Models,

Smooth Transition Autoregressions, and Neural Networks for Forecasting

Macroeconomic Time Series: A Re-Examination.” International Journal of

Forecasting 21 (4): 755–74.

Tishby, Levin, and Solla. 1989. “Consistent Inference of Probabilities in Layered

Networks: Predictions and Generalizations.” In International 1989 Joint Confer-

ence on Neural Networks, 403–9. IEEE.

Vaswani, Ashish, NoamShazeer, Niki Parmar, JakobUszkoreit, Llion Jones, AidanN

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.”

Advances in Neural Information Processing Systems 30.

Wang, Hao, and Dit-Yan Yeung. 2020. “A Survey on Bayesian Deep Learning.” ACM

Computing Surveys (Csur) 53 (5): 1–37.

Wang, Yuyang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim

Januschowski. 2019. “Deep Factors for Forecasting.” In International Confer-

ence onMachine Learning, 6607–17. PMLR.

Wegner, Enrico. 2023. BayesFluxR: Implementation of Bayesian Neural Networks.

https://CRAN.R-project.org/package=BayesFluxR.

Wen, Qingsong, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,

and Liang Sun. 2022. “Transformers in Time Series: A Survey.” arXiv Preprint

arXiv:2202.07125.

Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-

Verlag New York. https://ggplot2.tidyverse.org.

Winkler, Robert L. 1972. “A Decision-Theoretic Approach to Interval Estimation.”

Journal of the American Statistical Association 67 (337): 187–91.

Zeng, Ailing, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. “Are Transformers Ef-

fective for Time Series Forecasting?” In Proceedings of the AAAI Conference on

Artificial Intelligence, 37:11121–28. 9.

88

http://sourceforge.net/projects/pgf/
http://sourceforge.net/projects/pgf/
https://CRAN.R-project.org/package=BayesFluxR
https://ggplot2.tidyverse.org

	Introduction
	Neural Networks
	Multi-layered perceptron structure and functional model
	Deep learning models as universal approximators and their limits
	Sources of uncertainty
	Specialized architectures for time series
	Recurrent neural networks
	Long-Short Term Memory
	Review of recent developments for Neural Networks

	Bayesian Neural Networks
	From functional to stochastic models
	Markov Chain Monte Carlo and the Metropolis-Hasting algorithm
	Variational Inference and probabilistic backpropagation
	Review of recent developments for Bayesian Neural Networks
	Simulated examples

	Real data applications
	Presenting the datasets and the realized range
	€/$ exchange rate
	S&P 500 index

	Conclusions
	Abbreviations list
	List of Figures
	List of Tables
	Bibliography

